
The jAliEn Job optimizer
Haakon André Reme-Ness

ALICE Tier-1/Tier-2 Workshop Seoul, 16.04.2024

 Quick Job Optimizer overview

● What is the Job Optimizer service?
○ Responsible for splitting jobs
○ Started together with other JCentral services

● Continuous service that pick up jobs
waiting to be split from grid queue to split
into smaller subjobs and insert into grid
queue

○ Can run on any central machine
○ Can be turned off from parameter value
○ Split different jobs in parallel if more than one

thread is defined

2

Workflow Job Splitter

● None split jobs are inserted
directly to Waiting

● Jobs are split instantly if
available threads on site

● Job splitter does a lot of upfront
work before creating subjobs to
use less resources (particularly
pattern matching)

3

What is new?

● More checks upfront
○ Example: Unreasonable large XML collections compared to quotas is stopped earlier

● Can no longer cheat quotas
○ Had to change some quotas to adjust for this

● New split functionalities (more on this later)
● Changes to traces/logger

○ Hopefully better for debugging
● Increased performance

○ Focus on database

4

Database optimization

● Use of indexing as to not reach timeout (5 seconds)
● All inserting of subjobs (including JobAgent) done as a transaction
● Avoiding locks where possible

○ Small tweaks of isolation level for JobAgent inserts
● Batch insert of subjobs

○ Saw noticeable performance increase
○ Unfortunately if one fails to be inserted all fails, and batch must be repopulated

● Bulk lookup in Catalogue for splitting by Storage Element
● Subjob JDL optimization?

5

Subjob JDL’s

● Describe subjobs using delta changes from
original JDL

● Implementation is done, but currently in testing
● Is it worth it? Done dynamically?

○ See a decrease in storage used but…
○ Adds a database calls to an already congested table

6

Current status

● Currently running on a single
machine doing all splitting

○ Ironed out a few bugs and issues,
still expecting more…

● Started off too slow, easily
tweakable to increase pickup
rate of jobs to be split

○ Currently 5 threads splitting
simultaneously with 3 seconds
cooldown

● Increased Performance
○ Especially for storage element

splits

7

How to use the job splitter?

8

JDL Split Fields

● JDL field Split describes if a job is to be split and the strategy on how to do
the splitting

● Split strategies:
○ production
○ file, directory, parent directory
○ se (Storage Element)
○ af (Analysis facilities)

● #alien# pattern to be replaced by value during splitting
● SplitArguments field is now redundant, but still function as usual
● Other optional or mandatory fields connected to specific split strategies

9

#alien# argument

● Replace #alien# in JDL with corresponding value
○ Based on what type of #alien# and subjob, counter most used

● In AliEn #alien# was limited to a few fields in JDL, Split Arguments, Outputdir,
Output…

● No longer the case, now checks all fields for it!
○ Doing a lot of matches to find and replace #alien# arguments in each subjob can be

expensive
■ Solution: Do matching only on masterjob -> replace with lambda function
■ Run lambda function with correct input when building subjob JDL

● Technically opens up the possibility of subjobs having different executables

10

#alien#

How to use:

● #alien_counter_03i# —> 001, 002, 003… (03i defines how many numbers, this
case 3)

○ #alien_counter# —> 1,2,3…
● #aliendir# —> /alice/cern.ch/user/h/hremenes/LHC22f3.xml
● #alienfulldir# —> /alice/cern.ch/user/h/hremenes/LHC22f3.xml
● #alienfilename/oldvalue/newvalue/#

○ #alienfilename/.xml/.new/# –> /alice/cern.ch/user/h/hremenes/LHC22f3.xml ->
/alice/cern.ch/user/h/hremenes/LHC22f3.new

● Use first, last or all in front to choose which inputdata file for the subjobs to use for
the options above (Example: #alienfirstdir#)

○ First is default, uses first inputdata file in subjob, last the opposite
○ All uses all inputdata joined together with a “,” as delimiter

11

Production strategy

● Duplicate job a number of times equal to the range given
○ Monte carlo simulations

● Subjobs remain mostly the same (#alien_counter# will give small
differences)

○ #alien_counter# now correctly follows range provided
■ Example: production:20-30 will ensure the counter starts at 20

How to use:
● Split = “production:1-100”

12

File strategy

● Inputdata files are split based on their full LFN (Logical File Name)
○ Since LFN’s are unique, this ensures that there is exactly one inputdata file per subjob

How to use:

● Split = “file”

13

directory strategy

● Inputdata files are split based on directory LFN (Logical File Name)
○ /alice/cern.ch/user/h/hremenes/LHC22f3.xml

How to use:

● Split = “directory”

Optional

● SplitMaxInputFileNumber -> Maximum number of inputdata files per subjob
● SplitMaxInputFileSize -> Maximum size of all inputdata files per subjob

14

parentdirectory strategy

● Inputdata files are split based on parent directory LFN (Logical File Name)
○ /alice/cern.ch/user/h/hremenes/LHC22f3.xml

How to use:

● Split = “parentdirectory”

Optional

● SplitMaxInputFileNumber -> Maximum number of inputdata files per subjob
● SplitMaxInputFileSize -> Maximum size of all inputdata files per subjob

15

SE strategy

● Group inputdata based on locality
○ Grouping is done with inputdata files sharing all SE’s

● Bulk lookup improved this significantly
● Introduced merging of smaller subjobs

○ Some subjobs had 1 inputdata file, while others had in the hundreds
○ Default value on when subjobs should be merged, but can be set manually

16

SE strategy

How to use:

● Split = “se”
● SplitMaxInputFileNumber -> Maximum number of inputdata files per subjob (must be set)

Optional

● SplitMinInputFileNumber -> Minimum number of inputdata files per subjob (default is ⅕ of
max)

17

AF strategy

● Mainly for analysis use
● Two different ways to use it

○ Default is just setting a maximum number of input files or size, and will then split accordingly
■ Together CloseSE requirement run jobs on AF that are evenly split

○ Other option is setting ForceOnlySEInput, ensuring only inputdata files that are available on
site is used (not found files are ignored)

■ Can also set a threshold for percentage of missing files before this job fails (default is
10%)

■ Currently looking at only CloseSE in requirements to use for forcing SE
● In the future will also look at CloseCE, currently being implemented

● Already in production, let me know if it is not working or other use cases not
covered

18

AF strategy

How to use:

● Split = “af”
● SplitMaxInputFileNumber -> Maximum number of inputdata files per subjob

or

● SplitMaxInputFileSize -> Maximum size of all inputdata files per subjob

Optional

● ForceOnlySEInput -> Ignore inputdata files not found on SE
● MaxInputMissingThreshold -> Set percentage of ignored inputdata files before job fails (default 10%)

19

Going forward

● Push everything, have several machines running the splitter
● This will also include improvements regarding original masterjob submission

that were mentioned earlier
● Finish testing for subjobs JDL delta change and maybe push it
● Finish AF splitting, improve on it based on feedback

20

Email: haakon.andre.reme-ness@cern.ch

21

