

Status and plans of the AEgIS experiment

152th meeting of the SPSC February 6th, 2024

R. Caravita* *INFN – TIFPA, Trento (IT)

on behalf of the AEgIS Collaboration

The AEgIS collaboration

57 members from 15 institutes from 10 countries

Switzerland	France
Poland	Latvia
Italy	India
Germany	Czech Republic
Norway	UK

Main physics goals

Tests of the Weak Equivalence Principle Spectroscopy and tests of CPT Beyond the Standard Model searches

Systems

antihydrogen, positronium, antiprotonic atoms

Main tools

Laser-controlled charge-exchange reactions Spectroscopy and laser cooling with pulsed lasers Moiré deflectometry and atom interferometry

New groups (MoU signed in 2023)

Jagiellonian University, Poland
1 senior + 1 post.doc + 1 student

New groups (MoU in discussion)

- Siegen University, Germany
- Technical University of Munchen, Germany

AEgIS research lines

Shared developments in 2023: apparatus upgrade areas

Shared developments in 2023: investments on hardware

- Improved indium seal and closure procedure
- Invidivual flanges leak-testing campaign

Entrance flange long-term consolidation

- Vacuum jacket for 2023 run to remove structural leak
- Rebuilt the whole chamber for replacement (YETS)

Deflection chamber commissioning

- Testing, installation and alignment
- Commissioning with HV and particles

Automatic online analysis and data quality check

- CD/CI deploy via GIT for in-vivo upgrades
- Feedback loop to orchestrator to automate data quality checks and data re-acquisition

Bayesian optimizer for automatic optimization

- Automatic optimizes any ask/tell experiment
- Used for automatic beam steering (5 dimensions)

Concurrent multi-controller running modality

- Support for multiple Sinara FPGA controllers
- Flexible user-selectable synchronous or asynchronous operation
- Nanosecond re-synchronization routines

M. Volponi, S. Huck et al. (AEgIS collaboration), accepted on EPJ Quantum Technologies (2024)

Client-Server asynchronous architecture

- 5T catching trap controller in a continuous accumulation and listen for messages loop
- 1T interaction trap controller runs custom experimental sequences and allows debugging

Achievements

- Stable operation for weeks in constant accumulation
- While constantly accumulating, we reached up to ~100 million antiprotons in our traps

Digitized scintillator spectra with and without Ps production

Realtime diagnostics of laser intensity and alignment from fiber array

Difference scintillator spectrum with and without Rydberg excitation

Achievements

- Ps formation from on-axis target observed with scintillators
- Lasers' diagnostics fully consolidated: individual beam monitoring
- Established Rydberg Ps excitation to n = 21 (formerly n = 17)

Despite

- Low Ps target yield (2.5% Ps/e⁺) under investigation
- Old ²²Na source new one delivery had 1 year delay (Nov '23)

IR off IR on

Number of events above 500 mV

 10^{3}

 10^{2}

10

10⁰

Achievements

- Antiproton transfer with fine time control and minimal time dispersion
- No observed effect from to the e⁺ bunch passage through the antiprotons
- Evidence of antihydrogen production with Ps excited to n = 21

Despite

- Background due to antiproton cloud oscillations in the transfer potential
- Nearly catastrophic abrupt failure of the Surko trap magnet

Antiprotonic atoms run achievements

Achievements

- Procedure for controlled gas injection and cleaning
- Technique to trap the positive ions resulting from antiproton interactions with the rest gas target
- Time-of-flight spectroscopy of trapped positive ions

This technique can lead to

- Fully stripped and highly charged ions in Penning traps
- TOF spectroscopy of annihilation fragments
- Produce short-lived nuclei directly in Penning traps

 2.85×10^{-10}

ACP

Construction of a negative iodine source

via electron dissociative attachment for «clean» antiprotonic iodine production

C₂⁻ trapping in Paul trap for spectroscopy

towards establishing laser cooling of anionic molecules to sympatetically cool antiprotons

The I⁻ source at KL-FAMO

 $I_{2} + e \rightarrow I + I^{-}$ $I_{2} + e \rightarrow I^{+} + I^{-} + e$

The C₂⁻ cooling setup at CERN

Sensitive to photons

Resolution to antiproton vertices $< 2.0 \ \mu m$

In collaboration with: Technical University of Munich

Short term plans

Agenda for 2024: antiproton recapture in catching traps: recycling and background removal replace aged ²²Na source and replace malfunctioning Ps target increase Rydberg Ps principal quantum number up to n = 30

Medium and long term plans

Status and plans of the AEgIS experiment, 152th meeting of the SPSC

We need colder Ps sources ...

- 1. A colder Ps source in a reflection geometry
- 2. An efficient cold Ps source in transmission

D. Krasnicky, R. Caravita, C. Canali, G. Testera, Phys. Rev. A 94 (2016) arXiv:1608.02785v1

"The ultimate reduction in the positronium temperature would, of course, be achieved by laser cooling the atoms"

M. S. Fee, S. Chu, A. P. Mills et al. (1993)

"Ps laser cooling has been discussed for many years but has not been experimentally demonstrated, even in a proof-ofprinciple measurement"

D. B. Cassidy (2018)

Laser Cooling of Positronium

In 2023, we laser cooled Positronium for the first time

Accepted on Physical Review Letters with Editors' suggestion Expected publication date: end of February

How? Starting from Ps 1³S-3³P Doppler velocimetry

How? Developing a broadband Q-switched alexandrite laser system

Designed for broadband Ps cooling 70 ns, 243 nm pulses, 3 mJ, 120 GHz

How? Introducing the retroreflected cooling laser

annih.

How? Measuring the temperatures with and without cooling

Scanning the probe laser detuning

How? Measuring an increase in the cold atoms' fraction

Scanning the cooling laser detuning

Increase of the number of atoms in the probe laser BW

> we cooled the Ps cloud from 380(20) K to 170(20) K <

> we reached the maximum cooling efficiency allowed by Doppler laser cooling <

The impact of this result goes beyond antihydrogen production:

opens the way for precision spectroscopy, clock tests of the WEP with Ps, and Bose-Einstein condensation

Thank you for your attention