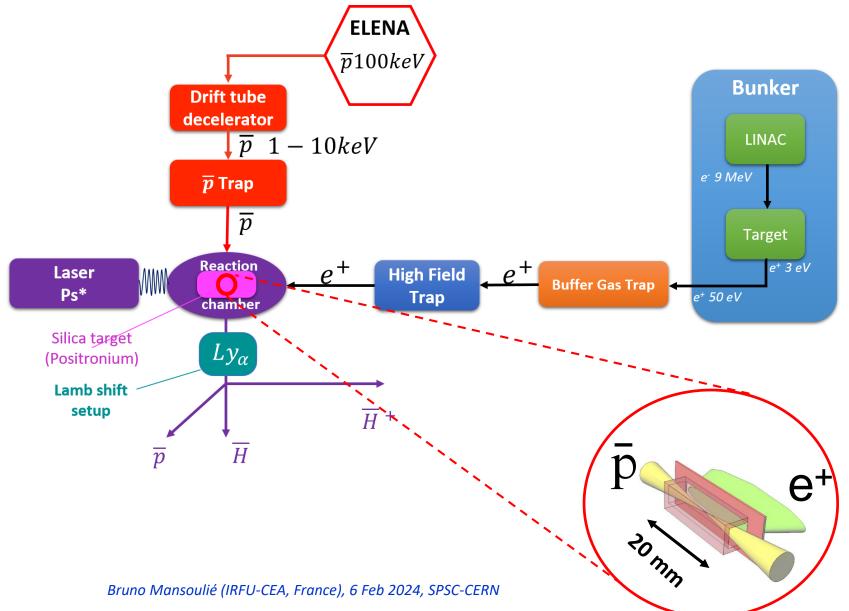


Status report of the GBAR experiment

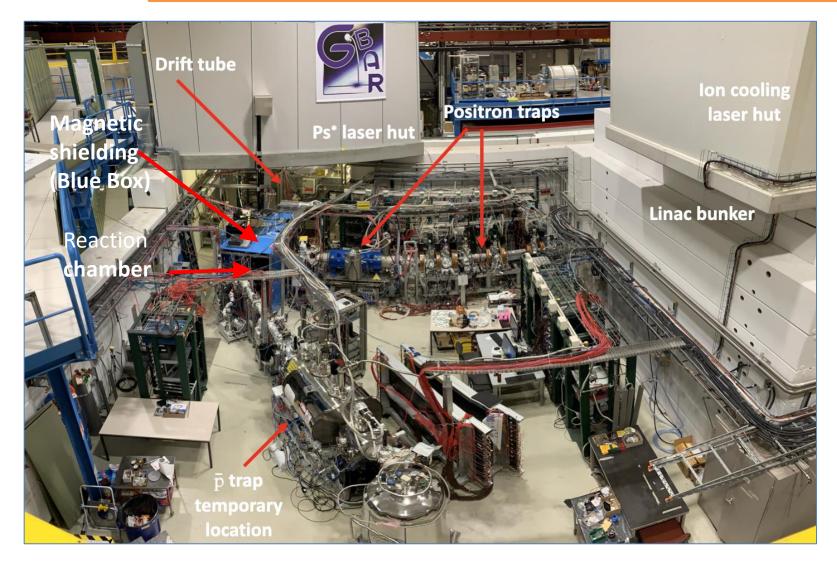
Bruno Mansoulié, Univ. Paris-Saclay, CEA-IRFU

on behalf of the GBAR collaboration

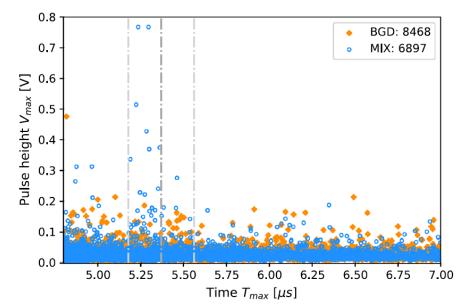
- Introduction
- Article on antihydrogen production
- Positron production and trapping
- Antiproton beam line
- Progress on Lamb shift experiment
- SPHINX project (with H⁻ beam)
- Outlook



- GBAR: measure the effect of Earth's gravity on an antihydrogen (\overline{H}) atom
- Principle:
 - Produce a \overline{H}^+ ion (antimatter eq. of H⁻), trap it, cool it down to velocity ~m/s
 - Photodetach the outer $e^+ \Rightarrow$ very low velocity $\overline{H} \Rightarrow$ observe free fall
- Method to produce the $\overline{\mathbf{H}}^+$ ion :
 - e^- linac (9 MeV) on target produces $e^+ \Rightarrow$ trapped, cooled, stacked
 - e⁺ bunch from trap, shot onto a converter (nanoporous SiO₂)
 makes positronium (Ps) cloud (in a small cavity 2x2x20 mm)
 - $-~\bar{p}$ from ELENA (100 keV) : decelerated (few keV), trapped, cooled
 - $-~\bar{p}$ from trap shot into the Ps cloud \Rightarrow 2 reactions successively:
 - $\bar{p} + Ps \rightarrow \bar{H} + e$ (1)
 - $\overline{\mathrm{H}} + \mathrm{Ps} \rightarrow \overline{\mathrm{H}}^+ + \mathrm{e}^-$ (2)

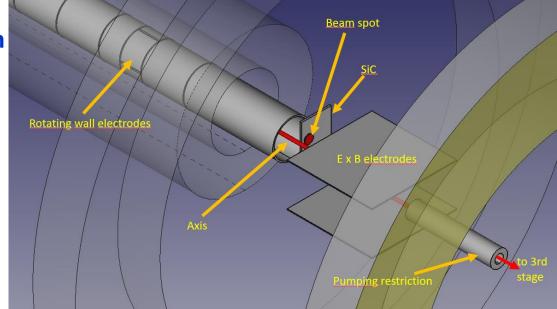

GBAR present configuration

4



GBAR area (before Sep 2023)

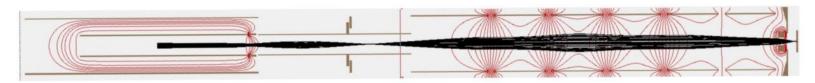
- Adrich et al. Production of antihydrogen atoms by 6 keV antiprotons through a positronium cloud. Eur. Phys. J. C 83, 1004 (2023).
- First simultaneous operation of positron line and antiproton line, without $ar{p}$ trap.
 - e⁺ beam: 3.9 10⁷ , 7.4 ns (rms) , on flat SiO₂ converter to Ps (ϵ = 18%)
 - $-~\bar{p}$ beam: 3.1 10⁶, 96ns (rms), onto Ø ~5 mm Ps cloud
- 7000 "mixing" spills , 8500 "background" spills (without e⁺)
- In H
 time-window, 32 events for mixing
 15 for background
 - 3.1 σ evidence for \overline{H} production (reaction (1))
- In rough agreement with expected yield



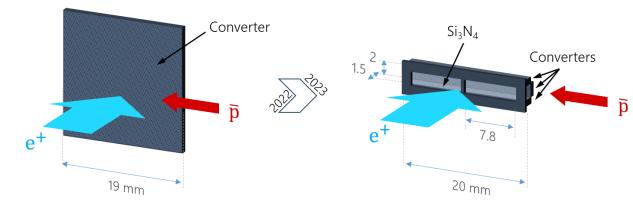
- Electron LINAC: new (second-hand) klystron, used at 200 Hz (nominal 300 Hz)
- Primary e⁺ moderator replaced beginning 2023 => increased yield
- New first stage trapping system N₂ gas \Rightarrow SiC remoderator

50-150 eV incident e⁺'s → SiC re-emitted at ~ 3 eV and trapped

SiC off-axis



• Total trapped in High Field Trap: 6 10⁸ e⁺ between two \bar{p} bunches (x 4 w.r.t. 2022) 1 – 1.2 10⁹ e⁺ in 3 min *(then saturates)*



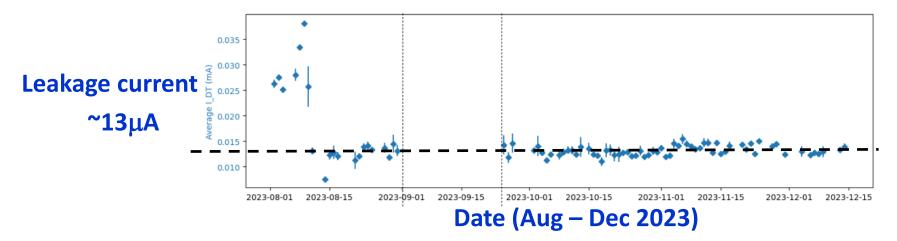
Positronium production

Transport from High Field Trap to Reaction Chamber (Ps converter target)

- High magnetic field → low field : acceleration (4.3 keV) / non-adiabatic
- Trajectories strongly depend on bunch diameter, and beamline details...
- Presently low efficiency for 6 10⁸ e⁺ \Rightarrow needs strong effort
- e⁺ to Ps converter (nanoporous SiO₂)
 - 2022 run: flat target
 - 2023: new Ps cavity

- − Measured e^+ → Ps conversion efficiency: ~20%
- Increases Ps cloud density by X 5 10 w.r.t. flat target

 In 2022 and beginning of 2023: antiproton trap in test position at the end of the ion line (after reaction chamber and switchyard)
 In Sept 2023: pbar-trap moved to nominal position

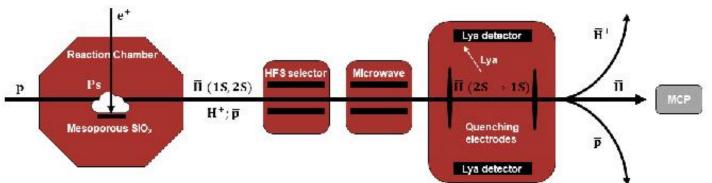

 Very good p̄ beam from ELENA, typ. 7 10⁶ p̄ /shot (2 min), 40 ns (rms), stable emittances x 2 from design (2.9 μ, 2.1 μ resp.) ⇒ mitigated by pbar-trap (?)

Also H⁻ beam (Thanks +++ to the ELENA team!)

15 s repetition rate: beam tuning, physics with H⁻ / H (see later) *instabilities: intensity, position... (would need more work)*

- Beginning 2023: improved decelerator: remove unused electrodes, better Drift Tube support and connexion scheme, better DT polishing, remove ion pumps, etc.
- 2023 operation:
 - High Voltage (90 to 99 kV) applied only for 3 sec before bunch
 - Reliable, low leakage current , limited by the HV-switch (not in vacuum)
 - \Rightarrow negligible voltage drop \Rightarrow decelerated energy is well-defined, stable

- Preliminary tests in 2022 at the end of ion beam line (parasitic)
- Installed Sep 2023 in nominal position
- 4 weeks commissioning
 - Electron accumulation
 - $\,$ 3 6 $\,$ keV \bar{p} trapped , up to 60% global efficiency (trapped/ELENA bunch)
 - e-cooling demonstrated: $ar{p}$ trapped in harmonic potential < 140 eV in 10 s
 - Rotating wall compression observed qualitatively
 - Extraction and re-acceleration (by long electrode used as drift tube)

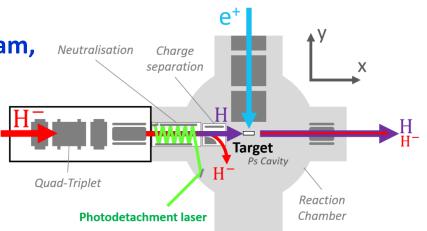

Faulty electrode => use another (shorter) one => limited efficiency

Demonstrated: acceleration, and longitudinal shortening by time-varying potential

H⁻ bunch trapped, but e-cooling not possible

• Antihydrogen beam allows to measure Lamb shift without magnetic field

- \bar{p} + Ps reaction produces ~ 15% \bar{H} in 2S state
- 2S 2P transition finely scanned by microwave section
- Remaining atoms quenched by E-field => detect Ly-alpha photons
- Setup tested at PSI with H and muonium atoms, and in 2021 GBAR : p + C-foil
- 2022 : number of $\overline{\mathbf{H}}$ too low to see Ly-alpha photons
- 2023: studied background, redesigned electrodes, etc.
- 2024: Observe Ly-alpha photons. First measurement would need ~1000 \overline{H}

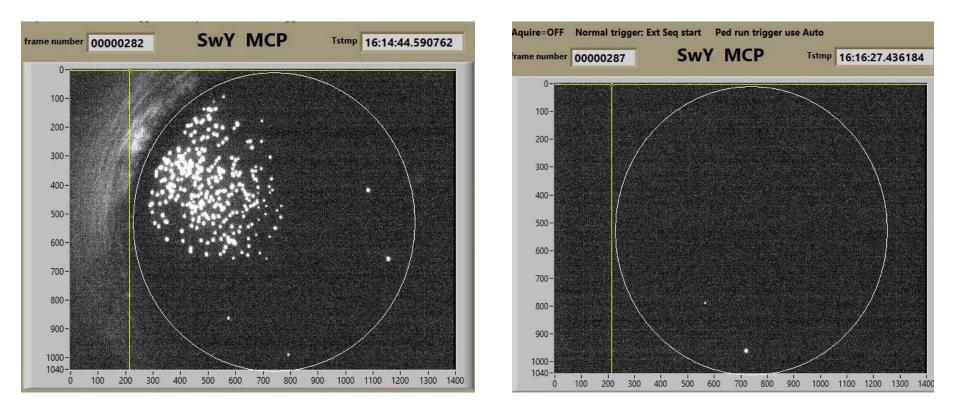

SPHINX project (with H⁻ beam)

- use H⁻ beam from ELENA, decelerated
- Photodetach outer electron => neutral H beam, impinging on Ps cloud remaining H⁻ 's deflected before target
 - Measure the cross-section for H⁻ formation: Quad-H + Ps -> H⁻ + e⁺ Charge conjugate of GBAR "second reaction"

 \overline{H} + Ps -> \overline{H}^+ + e⁻ never measured, critical for GBAR

- Not possible to cool H⁻ in the pbar-trap ⇒ use in passthru mode or remove it for this measurement (transfer line)
- Measurement needs multipass laser interaction with the H⁻ beam
 - Designing/building the setup
 - Studying mirrors

Bruno Mansoulié (IRFU-CEA, France), 6 Feb 2024, SPSC-CERN


SPHINX: first tests

• First tests with single pass laser

Same H⁻ beam

with laser

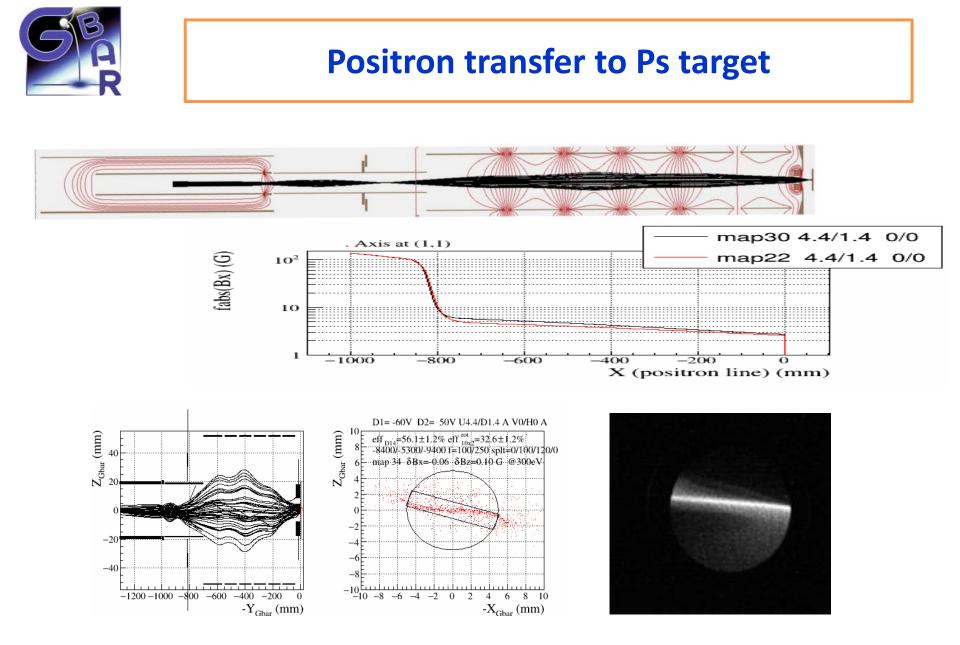
without laser

• 2023

- Publication : evidence of $\overline{\mathbf{H}}$ production
- Positrons: SiC remoderator, new Ps cavity
- Antiprotons: pbar-trap installed and tested
 - H⁻ : photodetachment tested

• 2024

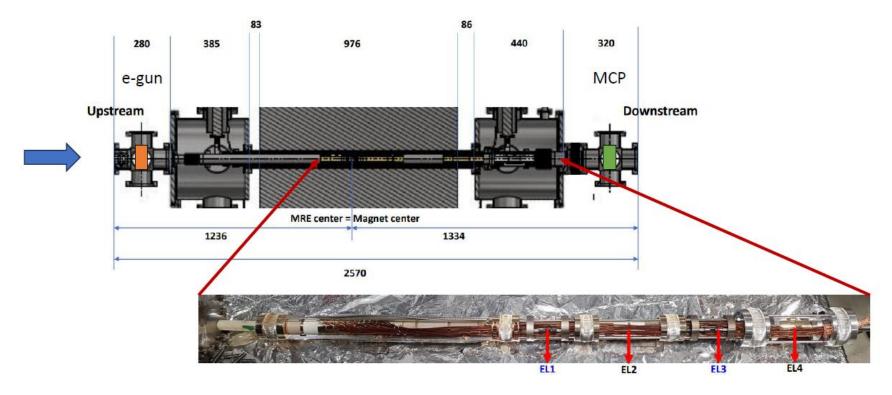
- Antiprotons on Ps: run, increase \overline{H} production by factor > 10
 - Measure the cross-section of the "first reaction" \bar{p} + Ps -> \overline{H} + e-
 - at different energies [3-10 keV] (?)
 - Lamb-shift: observe Ly- α photons, control background
- H⁻ : multipass photodetachment. Measure "second reaction" H + Ps -> H⁻ + e⁺
- 2025
 - Measure Lamb shift of $\overline{\mathbf{H}}$
 - Observe H
 ⁺ production

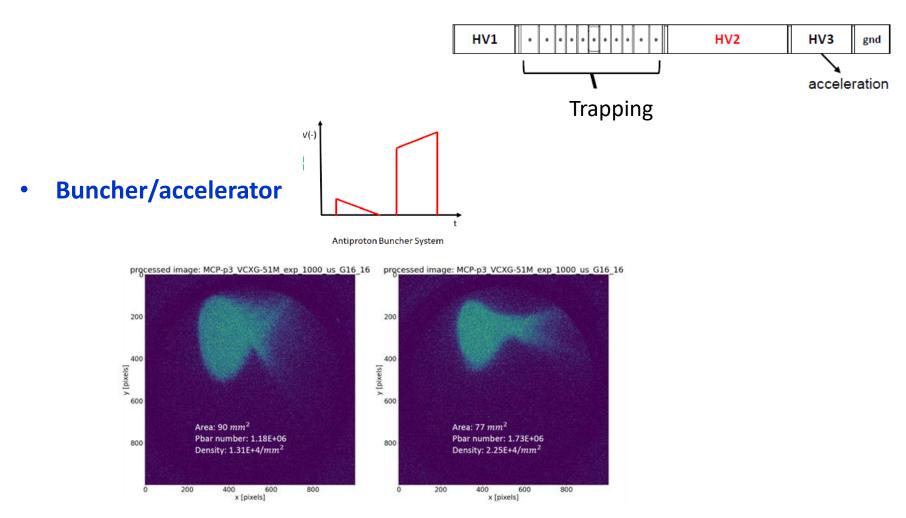


Additional slides

GBAR Plans

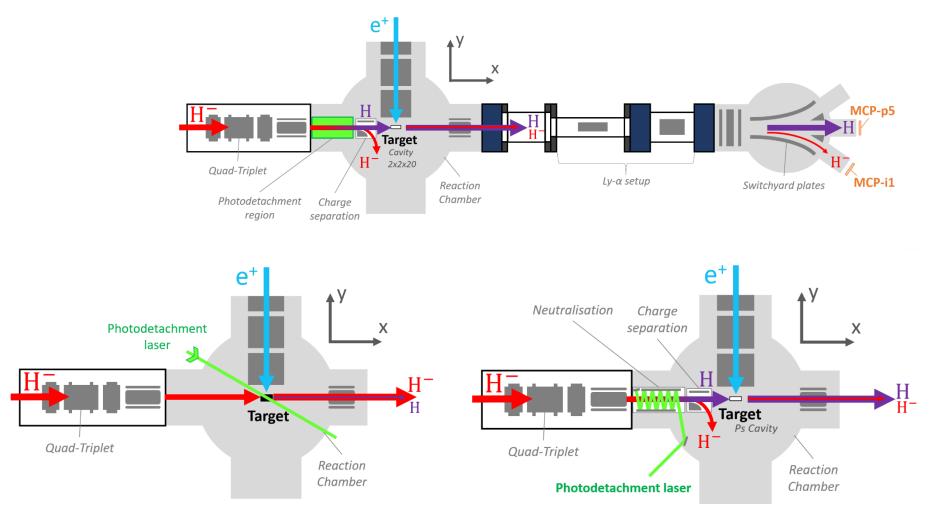
1. Before LS3


- **1. Measure** $\overline{p} + Ps \rightarrow \overline{H} + e^-$ cross section
- 2. Measure Lamb shift
- **3.** Measure $H + Ps \rightarrow H^- + e^+$ cross section using laser neutralised H^- beam from ELENA **4.** First detection of \overline{H}^+
- 2. During LS3
 - **1.** Improve e^+ performances
 - 2. Improve \overline{p} beam line performances using H^- beam from ELENA if available & cross section measurements
 - 3. Install apparatus for \overline{H}^+ capture/cooling/photo-detachment & gravity experiments
- 3. After LS3
 - **1.** Routine production of \overline{H}^+
 - 2. Gravity experiments (classical free fall & quantum interferences)
 - 3. Improve Lamb shift measurement precision
 - 4. H₂ ???


Antiproton trap

- Trap Dimension
- unit: mm

Antiproton trap



• RW compression seen; beam profile, position, etc. needs more work.

Bruno Mansoulié (IRFU-CEA, France), 6 Feb 2024, SPSC-CERN

Sphinx

2023

2024