

🛟 Fermilab

Beam Induced Power Supply Failures at CDF and D0

R.J.Tesarek Fermilab 11/30/04

Outline

CDF Experience

- CDF Detector
- Switching Power Supply Failures
- Failure Conditions/Mechanism
- Radiation Measurements
- Failure Mitigation

D0 Experience

- Switching Power Supply Failures
- Failure solutions

Avoiding Problems

CDF-II Detector (G-rated)

CDF Detector (Adults Only)

Power Supplies on the CDF Detector

- 36 switching supplies (5kW)
 - 28 "shielded"
- 38 linear supplies (1kW)
 - all "shielded"
- ~200 linear supplies (0.3kW)
 - all "shielded"

"shielded" means no line of sight to beam.

Switching Power Supplies (5kW)
 Linear Power Supplies (1kW, 0.3kW)
 HV Mainframe

CDF VME Power Supply Failures

Failure Characteristics

- Position Dependent
- **Beam Related**
- Catastrophic
- Switching supplies only
- failure rate ~3/week
- 12 supplies failed in 1 day

St Catherine's Day Massacre

12 switching power supplies failed in an 8 hour period.

- only during beam
- only switching supplies
- failures on detector east side
- shielding moved out
- new detector installed
- beam pipe misaligned

Conclusion: Albedo radiation from new detector

L.V. Power Supply Failures

Power Factor Corrector Circuit

Most failures were associated with high beam losses or misaligned beam pipe

> Power MOSFET Single Event Burnout (SEB)

epoxy covering fractured

silicon in MOSFET sublimated during discharge through single component

Solution(s)

- I. Align beam pipe
- 2. Measure SEB cross sections
 - Radiation tolerance of existing components
 - Identify candidate replacements
 - Modify operating conditions
- 3. Identify radiation sources
 - Locate sources of radiation (counter measurements)
 - Measure radiation field/composition
- 4. Shield supplies from the beam
- 5. Monitor/improve beam conditions
 - Install new monitors
 - Establish dialog with accelerator folk
- Work is still in progress...

Single Event Burnout (SEB)

operating voltage

modified designed

SEB Features

- beam related
- damage at low doses
- depends on bias voltage
 SEB cross section measurement
 (Indiana University Cyclotron)

Solution: (lower Vbias)

- Factor of 50 reduction in radiation sensitivity
- No failures in > 2 years of operation

What about radiation?

Test beam data, 20 MeV protons

Radiation Source?

- Counter measurements show low beta quadrupoles form a line source of charged particles.
- Power supply failure analysis shows largest problem on the west (proton) side of the collision hall.

Run I Shielding Run I Shielding

Detector configuration different in Run II

- Run I detector "self shielded"
- Additional shielding abandoned (forward muon system descoped).
- Shielding installed surrounding beam line.

Evaluation of shielding continues

Radiation Shielding?

Install shielding to reduce radiation from low beta quadrupoles.

Reduces solid angle seen by power supplies by 25%

What do measurements tell us?

CDF Detector w/ additional shielding

Measuring the Radiation Field

Thermal Luminescent Dosimeters (TLDs)

Advantages:

- + passive
- + large dynamic range(10-3-102 Gy)
- + good precision (<1%)
- + absolute calibration
- + γ ,n measurements
- + redundancy

Disadvantages:

- harvest to read
- large amount of handling
- non linearity at high doses
- only measure "thermal" neutrons

Collision Hall Ionizing Radiation Field

960 dosimeters installed in 160 locations Radiation field modeled by a power law

 $R_i = Dose / \int \mathcal{L}dt$

$$Dose = \frac{A}{r^{\alpha}}$$

r is distance from beam axis

K. Kordas, et al.

Collision Hall Ionizing Radiation Field

Shielding effectiveness

- Ionizing radiation reduced by 20-30% near affected power supplies
- What about neutrons?

Neutron Spectrum Measurement

Evaluate Neutron Energy Spectrum

- Bonner spheres + TLDs
- ~I week exposures
- Shielding in place
 Measuring neutrons is hard
 Work in progress...

Polyethylene "Bonner" spheres

Neutron Data

Measuring Beam Losses/Halo

Beam Losses all calculated in the same fashion

- Detector signal in coincidence with beam passing the detector plane.
- ACNET variables differ by detector/gating method.
- Gate on bunches and abort gaps.

Beam Monitors

BSC counters: monitor beam losses and abort gap Halo counters: monitor beam halo and abort gap

Detectors

Halo Counters **Beam Shower Counters** active area = 0.9 m^2 active area = 77 cm^2 066 ר≤ר lightpipe 48.6 cm Light front North 054 014 **Q3** 59.1 cm 45.7 cm • ר≤⊽ 23.1 cm 040

West Alcove floor

ACNET variables:

B0PHSM: beam haloB0PBSM: abort gap lossesB0PAGC: 2/4 coincidence abort gap losses

B0PLOS: proton losses (digital) LOSTP: proton losses (analog) B0MSC3: abort gap losses (E*W coincidence)

Beam Halo Counters

Typical Store

Beam Parameters:

Protons:	5000 - 9000	10^9 particles
Antiprotons:	100-1500	10^9 particles
Luminosity:	10 - 100	$10^{30} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
Duration	10-30	hours

Losses and Halo:

	Rate	Limit	
Quantity	(kHz)	(kHz)	comment
P Losses	2 - 15	25	chambers trip on over current
Pbar Losses	0.1 - 2.0	25	chambers trip on over current
P Halo	200 - 1000	-	
Pbar Halo	2 - 50	-	
Abort Gap Losses	2 - 12	15	avoid dirty abort (silicon damage)
LI Trigger	0.1-0.5		two track trigger (~1 mbarn)

Note: All number are taken after scraping and HEP is declared.

Monitor Experience

"Typical good store"

Beam Collimation

Background reduction at work

Halo Reduction

Vacuum problems identified in 2m long straight section of Tevatron (F sector)

Improved vacuum (TeV wide)

Commissioning of collimators to reduce halo

> Physics backgrounds reduced by ~40%

R. Moore, V. Shiltsev, N.Mokhov, A. Drozhdin

Eliminating Failures

Evaluate radiation early

- Question "past experience"
- Simulations of the radiation environment
- Measurements in early, low beam current conditions

Design radiation tolerant devices

- Measure component radiation tolerances
- Avoid parallel structures holding off common stored energy

Monitor beam conditions

- "Fast" real time monitors
- Maintain dialog between experimenters and accelerator operators

Shielding

- Beam collimation system puts losses where tollerable
- Design shielding solutions based on measurements and simulation

References (Incomplete List)

General:

- http://ncdf67.fnal.gov/~tesarek
- http://www-cdfonline.fnal.gov/acnet/ACNET_beamquality.html

Single Event Burnout:

- R.J. Tesarek, C. Rivetta, R. Nabora, C. Rott, *CDF internal note*, **CDF 5903**.
- C. Rivetta, B. Allongue, G. Berger, F. Faccioi, W. Hajdas, **FERMILAB-Conf-01/250E**, September 2001.
- J.L. Titus, C.F. Wheatly, IEEE Trans. Nucl Sci., **NS-43**, (1996) 553.

CDF Instrumentation:

- M.K. Karagoz-Unel, R.J. Tesarek, Nucl. Instr. and Meth., A506 (2003) 7-19.
- A.Bhatti, et al., CDF internal note, **CDF 5247**.
- D.Acosta, et al., Nucl. Instr. and Meth., A494 (2002) 57-62.

Beam Halo and Collimation:

- A. Drozhdin, et al., Proceedings: Particle Accelerator Conference(PAC03), Portland, OR, 12-16 May 2003.
- L.Y. Nicolas, N.V. Mokhov, Fermilab Technical Memo: FERMILAB-TM-2214 June (2003).

Radiation:

- D.Amidei, et al., Nucl. Instr. and Meth., A320 (1994) 73.
- K. Kordas, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, November 19-25 (2003).
- R.J. Tesarek, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, November 19-25 (2003).
- http://ncdf67.fnal.gov/~tesarek/radiation