
Cloud Data Lake
Technologies

Ben Galewsky

University of Illinois

Nick Manganelli

University of Colorado, Boulder

Burt Holzman

Fermilab

2

About Me…

• Former IT Consultant in Industry
– Led the deployment of big data stack at Kelloggs

• Software Directorate at NCSA

• Collaborator on IRIS-HEP

– Lead developer on ServiceX

3

Overview

• History of cloud data lake technologies
• Current state of the art
• Proof of concept with CMS Data
• Future directions

4

Big Data 1.0

• Hadoop Popularized big data
• HDFS
• Hive Distributed SQL

5

Big Data 1.0 - What Went Wrong

• Very complex to deploy and configure
• HDFS: adding more storage adds more compute
• Not a great fit in cloud computing environments

Zach Wilson (@eczachly

6

Some Important Developments

• Kubernetes
• Parquet
• Object Store
• Apache Iceberg
• Nessie
• Distributed SQL

7

Kubernetes
Kubernetes is an open-source container orchestration system that
automates the deployment, scaling, and management of
containerized applications across a cluster of nodes.

• Automates the distribution and scheduling of containerized
application components across the cluster nodes.

• Provides load balancing, service discovery, storage orchestration,
self-healing capabilities, and automated rollouts and rollbacks.

• Enables applications to be deployed, scaled, and managed
consistently across different environments (on-premises, public
cloud, hybrid, or multi-cloud).

• Abstracts away the underlying infrastructure, allowing
applications to be portable and easily moved between
environments.

perplexity.ai generated summary

https://kubernetes.io/
https://kubernetes.io/

8

Parquet File Format

Parquet Columnar Data Format:

• Efficient storage: Parquet files are highly compressed, resulting in significant
storage savings compared to other formats like CSV. For example, a 13,193,045
record CSV file took up 8.6 GB, while the same data in Parquet format was only 1.6
GB, a 500% reduction in size

• Fast data access: Parquet's columnar storage layout allows for efficient querying,
as only the relevant columns need to be read. This minimizes I/O and latency,
making queries faster compared to row-oriented formats

• Supports complex data: Parquet can handle complex data types like arrays, maps,
and nested structures that are difficult to store efficiently in simpler formats

perplexity.ai generated summary

https://parquet.apache.org/docs/
https://parquet.apache.org/docs/

9

Object Store

• Scalability: Object storage scales well and doesn't suffer
performance lags as it scales

• Simplicity: Object storage systems are popular for their simplicity,
ease of use, and cost-effectiveness compared to NAS systems

• HTTP access: Object storage is accessed via HTTP, making it very
easy to access objects through a range of applications

• Eventual consistency: To enable scalability and cost-effectiveness,
object stores were designed with eventual consistency, unlike
POSIX file systems which require strong consistency

perplexity.ai generated summary

10

Apache Iceberg

• Transactional consistency between multiple applications
where files can be added, removed or modified atomically,
with full read isolation and multiple concurrent writes

• Full schema evolution to track changes to a table over time
• Time travel to query historical data and verify changes

between updates
• Partition layout and evolution enabling updates to partition

schemes as queries and data volumes change without relying
on hidden partitions or physical directories

• Ability to handle large datasets with tens of petabytes and
millions of partitions

• File-level operations enabling atomic changes to individual
records without rewriting entire partitions

perplexity.ai generated summary

https://iceberg.apache.org/

11

Nessie
Nessie is an open-source transactional catalog for data lakes that
provides a Git-like experience for managing data tables and views.

• Cross-table transactions: Enables multi-statement transactions
across all tables in a data lake, allowing you to make atomic
updates to multiple tables at once.

• Git-like branching and merging: You can create branches of
your entire data catalog to isolate changes, just like Git
branches for code. Branches can be merged back to the main
branch when changes are ready, enabling better collaboration
and quality assurance.

• Data versioning and time travel: Since all changes are
versioned like Git commits, you can view the state of data at
any point in time and revert to previous versions if needed

perplexity.ai generated summary

https://projectnessie.org/

12

Trino Distributed SQL
Trino is a distributed SQL query engine designed to efficiently
query large data sets ranging from gigabytes to petabytes
across multiple heterogeneous data sources.
• Not a database, but rather a SQL query engine that can

query data from various sources like object storage (S3,
Azure Blob, etc.), relational databases, NoSQL databases,
and more without requiring data migration.

• Originally designed at Facebook to efficiently query their
hundreds of petabytes of data stored in Hadoop/HDFS,
replacing the slower Hive system.

• Leverages distributed query processing techniques like
parallel in-memory processing, code generation, and
optimized data structures to provide high performance
on large data volumes.

perplexity.ai generated summary

https://trino.io/

13

Modern Data Stack

Object
Store Parquet

File
Parquet

File
Parquet

File
Parquet

File
Parquet

File

Iceberg
Table 1 Table 2

SELECT * FROM TABLE1 JOIN TABLE2 ON COL1=COL2 WHERE cardinality(COL3) > 2;
Distributed

SQL

Nessie

How can we apply
this to CMS data?

15

Motivation
• As the LHC moves towards the HL-LHC era, the volume of data to be

stored and processed will grow significantly
– CMS AOD (450kB/event) - Limited Availability
– MiniAOD (45kB/event) - Suitable for almost all analyses
– NanoAOD(4kB/event) - Suitable for half of analyses

• Several competing needs create an impedance mismatch
– Disk space comes at a premium
– High throughput requires high availability and duplication across sites around the

world
– Traditional analysis workflows tend to duplicate information from large data-tiers

via custom “Ntuples”, in order to create more streamlined but self-contained
input data - for the half of analyses able to use NanoAOD, it’s nearly optimal and
can obviate the need for intermediate Ntuples

16

Typical Problems

• An analysis may be able to use NanoAOD, but must store
expensive ML outputs
– Duplicate all necessary input data from NanoAOD + added ML

information

• An analysis may have 90% of data needs met by NanoAOD, but
the additional requirements drive it to use MiniAOD or AOD
– Custom NanoAOD variant (superset of central variation) or custom

NTuple format created, duplicating a significant amount of
centrally-stored events

17

Use SQL Joins!

cmsopendata2015_ttbar

run

luminosityBlock

event

Electron_pt

Electron_eta

Electron_phi

ttbar_infer

run

luminosityBlock

event

GNN_p1

GNN_p2

SELECT * FROM cmsopendata2015_ttbar
JOIN ttbar_infer ON
 cmsopendata2015_ttbar.run = ttbar_infer.run
AND
 cmsopendata2015_ttbar.luminosityBlock=ttbar_infer.luminosityBlock
AND
 cmsopendata2015_ttbar.event = ttbar_infer.event

18

Notes

• All datasets must be in Parquet format
– Use uproot or ServiceX to convert from ROOT

• Parquet and Trino support jagged arrays
– Perform simple arithmetic operations and filters in query

• Performance is sufficient to make the outputs
temporary and reproducible

19

Exploratory Environment at FNAL

• Deployed in FNAL
OpenShift cluster

• Shared Mino Object
Store

Shared Minio
Object Store

Hive Metastore

Trino Coordinator

Trino Worker

Trino Worker

Trino Worker

10 Workers

20

Some Initial Findings

• NanoAOD Dataset: 13M Events
• GNN Inference: 8 Inference Values
• Simple Join: 7 Seconds
• Output to Parquet file: 24 Seconds

• So far no tuning or attention paid to partitioning
• Output consumed by Coffea on DASK to produce histograms
• Still some limitations in Awkward DASK reading Parquet
• Parquet is as efficient or better than ROOT wrt size/processing time

21

Future Directions

• Group N-Tuples maintained in Cloud Data Lake.
– Use Nessie to manage dataset updates without breaking existing analysis
– SQL based cuts during development

• Use Kafka to stream joined results to Coffea
– Ability to replay
– Limited TTL to avoid disk space explosion

• Deploy Cloud Data Lake as part of Analysis Facility
– Maintain Parquet Data Lake of NanoAOD or PHYSLITE datasets

22

Conclusions

• Cloud Data Lake technologies are mature and highly scalable
• Presents an opportunity to reduce the amount of storage required for

modern analysis
• Require a commitment to Parquet
• Some care needed in the structure of the Parquet files
• Ready for testing now

23

Gratitude

• Lindsey Gray for initial idea and helping assemble team
• My IRIS-HEP colleagues

This project is supported by the National Science Foundation under Cooperative Agreements OAC-1836650 and PHY-2323298.
Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

This work was performed with support of the U.S. CMS Software and Computing Operations Program under the U.S. CMS
HL-LHC R&D Initiative. This work was partially supported by Fermilab operated by Fermi Research Alliance, LLC under Contract
No. DE-AC02-07CH11359 with the Department of Energy, and by the National Science Foundation under grant ACI-1450377 and
Cooperative Agreement PHY-1120138. Additional support came from the Department of Energy DE-SC0010005 grant.

