
The HSF Conditions Database

14 May 2024

Chris Pinkenburg, Lino Gerlach, Ruslan Mashinistov,
Paul Laycock, Torre Wenaus

1

2

Overview

● What is Conditions Data?

● Brief history recap: from idea to ‘HSF project’

● Features, implementation & deployment

● Performance testing

● Experience from experiments: sPHENIX, DUNE, Belle II

● Outlook & conclusion

3

Road to HSF CDB Project - Simplified

4

● Experts from various experiments get together

○ Describe problem to be solved

○ Write white paper w/ requirements

● Define public API specification, which specific solutions should follow

● Implementation with support from HSF

○ as Affiliated Project or HSF Project (see Liz’s talk)

In reality…

https://indico.cern.ch/event/1369601/contributions/5942180/

5

Road to HSF CDB Project - Reality
● sPHENIX@BNL needed a CDB. Belle2’s solution, run at BNL, lacked scalability

● HSF white paper suggested scalable DB schema

○ Much input from CMS and ATLAS (Many thanks to Andrea Formica in particular!)

● Started to develop reference implementation according to guidelines of that paper

○ Define use cases & requirements in parallel w/ HSF activity (paper 99% complete)

● Presented implementation and performance results at CHEP

○ Garnered attention and interest from HEP community

● The reference implementation is successfully running in production for sPHENIX

● Drove forward HSF integration, published source code, put it under Apache 2.0 license

○ Now listed as ‘HSF project’ https://hepsoftwarefoundation.org/projects.html

https://hepsoftwarefoundation.org/projects.html

6

Features & Functionality
● Payload agnostic by design, loose server-client-coupling (REST Interface)

○ Database only stores the metadata, not the payloads (nopayloaddb)

● Proven scalability O(100M) payloads

● Easy deployment, configuration & horizontal scaling

● Standalone CLI & easy-to-integrate C++ client library

● Various caching options

● Based completely on open source software:

○ Postgres, Django python API, C++ client library

○ Deployed on kubernetes and / or OKD, config via helm

7

payload

remote
payload

store

nopayloaddb

Features & Functionality client
side

server
side

nopayloadclient

curl http://<host>/api/payloadiovs/?gtName=test_gt&iovNum=42
-> {type_1: url_1, type_2: url_2, …}

*Example query (simplified)

REST*
Experiment-
agnostic lib

nopayloadclient

sPHENIX-
specific lib

sphenixnpc

DUNE-
specific lib

dunenpc

nopayloadclient:

• Client-side stand-alone C++ tool

• Communicates with nopayloaddb (server)

• Local caching

• Handling of payloads

https://github.com/BNLNPPS/nopayloadclient
https://github.com/BNLNPPS/nopayloaddb

Implementation – Database Schema

8

Lo
ck

ed

U
nl

oc
ke

d

major- & minor
IOV for more
flexibility

IOVs also have
an end

performance optimisation

Payloads are not
stored in schema

No schema evolution

9

Deployment on OKD

• Automated deployment
on OKD (OpenShift) using
Helm chart

• Horizontally scalable
• Open Source only

Easily adoptable for
various HEP experiments ● Classic deployment at VMs also possible

● Single-container image available

https://github.com/BNLNPPS/nopayloaddb-charts

1
0

Performance Testing – Strategy

• Simulate expected DB occupancy
mean response frequencymean response time

Scenario Payload Types Payload IOVs (per type)

tiny 10 100 (10)

tiny-moderate 10 2000 (200)

moderate 100 20000 (200)

heavy-usage 100 500000 (5000)

worst-case 200 5200000 (26000)

• Random major- and minor IOV, no caching
• Query metadata only, no payloads

All following tests:

• Simulate access patterns

• Query read API for payload URL

• Parallel requests via HTC or MT

Performance Testing – Scaling

● Investigate scaling w/ size of queried GT

○ Content of DB remains constant

● Measure mean response frequencies

○ Scales with number of payload types

■ More data to sort and return

○ Almost flat vs number of IOVs

■ Index scan (covering index)

● Also tested scaling w.r.t. size of DB

○ No dependence, plot in backup

Resp. freq. vs size of queried GT

1M IOVs

11

One Year of Successful Production in

Valuable Experience gathered:

● Bug Fixes regarding retry mechanism, payload

file handling, and compiler optimizations

● CDB throughput issue at the level of ~20K

almost concurrent jobs

○ Implemented very conservative Nginx

caching: 1sec for most used resource call

12

Since initial bugs were fixed,
successful operations with minimal maintenance effort

Experience from
● nopayloadclient has been accepted into SciSoft (FNAL)

● Created prototype for DUNE-specific client: dunenpc

○ Developed art Service to interface dunenpc

● Deployed test instance of backend @ CERN

○ Apache & bare Django on VM (for integration tests)

○ Created corresponding configuration file

13

Successfully ran DUNE offline dummy job
w/ access to our DB

Implementation Matters
 - Experience from
● Belle II uses a different schema and implementation

(though the API is similar)

○ Payara/Java/Spring boot

○ Experiencing scalability problems

■ Performance degrades for large tags O(70k)

● Currently testing HSF-like deployment on OKD

● Considering full migration to the HSF CDB

14

nginx
Java/
Spring
boot

Postgres

P
ay

ar
a

Helm

performance issues

Outlook & Next Steps

15

● Transfer git repos to HSF organization (currently in BNLNPPS)

● Meanwhile continuing to work on new features:

○ Client-side configurable server-side caching strategies

○ Single-container kubernetes cluster emulator for local testing

of deployment config (IRIS-HEP Fellowship)

○ Support for usage on HPCs

● ePIC (EIC) has picked it up to evaluate

● BNL / NPPS is committed to maintaining the HSF Conditions DB

https://github.com/BNLNPPS/

16

Conclusion
• Presented experiment-agnostic HSF conditions Database Reference Implementation

• Scalable, easy-to-adopt, fully open source

• Successful operation at sPHENIX for a year now

• Other experiments consider adopting

• Good example of community software under HSF umbrella

• Its road from an ‘idea’ to a ‘reference implementation’ to ‘HSF project’ (idealized):

1. Describe the problem 2. Define an API 3. Develop a Reference Implementation

• This could serve as an example for future HSF projects / reference Implementations

17

Backup

Conditions Data – Recommendations
• HSF Conditions Databases activity: https://hepsoftwarefoundation.org/activities/conditionsdb.html

• Discussions across various experiments

• Key recommendations for conditions data handling

• Separation of payload queries from metadata queries

• Schema below to organise payloads top-level configuration
of all conditions data

‘Interval of Validity’:
generalized concept of time
(begin can be time stamp,
run number, lumi block, …)

configuration for each
type of conditions data

actual data
(e.g. in a file)

18

HEP Software Foundation
 Community White Paper Working

Group – Conditions Data

https://hepsoftwarefoundation.org/activities/conditionsdb.html

19

Conditions Data – Use Cases

• HSF Conditions Database meeting: use cases
https://indico.cern.ch/event/1280790/

• Most can be realised w/ HSF Recomm.

• High Level TriggerOnline

• Run reco w/ improved calib.Reprocessing

• High level physics analysisAnalysis

• Test new calib. within existing GTDevelopment

• Process data w/ just-in-time calib.Fast-processing

ExampleUse case

• Special use-case:

Fast-Processing. Goal:

• Publish data for analysis fast

• Maximize physics performance

https://indico.cern.ch/event/1280790/

20

Performance Testing – ORM vs Raw SQL

• High frequency read API workflow:

• Filter on global tag, major- and minor IOV *

• Find ‘latest’ IOV for each payload type **

• Return payload type, file URL, IOV

*: my_major<major_iov OR (my_major=major_iov AND my_minor<=minor_iov) **: for max major_iov, find max minor_iov

Resp. freq. vs size of queried GT

• Django’s ORM writes query for user

• Optimized raw SQL query

• Covering index (index-only scan)

• Combined IOV column <major.minor>

• Lateral join operation

21

Performance Testing – Scaling

• Scales with number of payload types

• Almost flat w.r.t. number of IOVs

• Performance depends on size of queried GT

• Additional ‘stuff’ in DB has no significant impact

Resp. freq. vs size of queried GT Resp. freq. vs DB size

22

Performance Testing – High Frequency

• Simulate offline reco use case

• Many jobs launched at same time

• Cooperative multithreading (asynchio)

• Send requests firsts

• Process responses later

• Allows very high peak request frequency

• Server-side queuing of requests works

10k requests sent
within ~1.2 secs

received all
responses within ~55

sec

23

PostgreSQL High-Availability Cluster
Open source Kubernetes
operator for HA PostgreSQL

• Consider DB cluster for high-availability and

higher performance

• CloudNativePG:

• Open source operator (Kubernetes) for

PostgreSQL

• Primary / Standby architecture

• Native support for pgBouncer connection

pooling

https://cloudnative-pg.io/

24

PayloadIOV Read API – Raw SQL Query
SELECT pi.payload_url, pi.major_iov, pi.minor_iov,
pt.name, …
FROM "PayloadList" pl
JOIN "GlobalTag" gt ON pl.global_tag_id = gt.id AND
gt.name = %(my_gt)s
JOIN LATERAL (
 SELECT payload_url, major_iov, minor_iov, …
 FROM "PayloadIOV" pi
 WHERE pi.payload_list_id = pl.id
 AND pi.comb_iov <= CAST(%(my_major_iov)s +
CAST(%(my_minor_iov)s AS DECIMAL(19,0)) / 10E18 AS
DECIMAL(38,19))
 ORDER BY pi.comb_iov DESC
 LIMIT 1
) pi ON true
JOIN "PayloadType" pt ON pl.payload_type_id = pt.id;

For each PayloadList (Type)

Get Payloads descending
ordered by combined IOV

Limit return to 1 line - latest
Payload for a given IOVs

And then append the results
of each subquery to create
the final output

●LATERAL joining. Without LATERAL, each sub-SELECT is evaluated independently and so cannot cross-reference any other FROM item
●Covering index on Payload table including combined IOV and reference to the PayloadList

25

Hash Join (cost=7.23..90.89 rows=86 width=70) (actual time=0.309..3.244 rows=200 loops=1)
 Hash Cond: (pl.payload_type_id = pt.id)
 -> Nested Loop (cost=0.71..84.14 rows=86 width=69) (actual time=0.075..2.935 rows=200 loops=1)
 -> Nested Loop (cost=0.15..11.70 rows=86 width=16) (actual time=0.028..0.121 rows=201 loops=1)
 -> Seq Scan on "GlobalTag" gt (cost=0.00..1.09 rows=1 width=8) (actual time=0.013..0.018 rows=1 loops=1)
 Filter: ((name)::text = 'worst-case'::text)
 Rows Removed by Filter: 6
 -> Index Scan using "PayloadList_global_tag_id_2b35c85f" on "PayloadList" pl
 (cost=0.15..9.75 rows=86 width=24) (actual time=0.012..0.063 rows=201 loops=1)
 Index Cond: (global_tag_id = gt.id)
 -> Limit (cost=0.56..0.82 rows=1 width=61) (actual time=0.014..0.014 rows=1 loops=201)
 -> Index Only Scan using combo_covering_idx on "PayloadIOV" pi
 (cost=0.56..232.55 rows=876 width=61) (actual time=0.013..0.013 rows=1 loops=201)
 Index Cond: ((payload_list_id = pl.id) AND (major_iov < 100000000))
 Heap Fetches: 0
 -> Hash (cost=4.01..4.01 rows=201 width=17) (actual time=0.073..0.074 rows=201 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 19kB
 -> Seq Scan on "PayloadType" pt (cost=0.00..4.01 rows=201 width=17) (actual time=0.008..0.036 rows=201 loops=1)
 Planning Time: 0.645 ms
 Execution Time: 3.299 ms

Hash Join (cost=7.23..410.15 rows=86 width=70) (actual time=6.111..365.158 rows=200 loops=1)
 Hash Cond: (pl.payload_type_id = pt.id)
 -> Nested Loop (cost=0.71..403.40 rows=86 width=69) (actual time=6.017..364.977 rows=200 loops=1)
 -> Nested Loop (cost=0.15..11.70 rows=86 width=16) (actual time=0.048..0.133 rows=201 loops=1)
 -> Seq Scan on "GlobalTag" gt (cost=0.00..1.09 rows=1 width=8) (actual time=0.023..0.025 rows=1 loops=1)
 Filter: ((name)::text = 'worst-case'::text)
 Rows Removed by Filter: 6
 -> Index Scan using "PayloadList_global_tag_id_2b35c85f" on "PayloadList" pl
 (cost=0.15..9.75 rows=86 width=24) (actual time=0.022..0.083 rows=201 loops=1)
 Index Cond: (global_tag_id = gt.id)
 -> Limit (cost=0.56..4.53 rows=1 width=61) (actual time=1.815..1.815 rows=1 loops=201)
 -> Index Only Scan using combo_covering_idx on "PayloadIOV" pi
 (cost=0.56..3484.55 rows=876 width=61) (actual time=1.815..1.815 rows=1 loops=201)
 Index Cond: (payload_list_id = pl.id)
 Filter: ((major_iov < 100000000) OR ((major_iov = 100000000) AND (minor_iov <= 100000000)))
 Rows Removed by Filter: 24669
 Heap Fetches: 0
 -> Hash (cost=4.01..4.01 rows=201 width=17) (actual time=0.078..0.078 rows=201 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 19kB
 -> Seq Scan on "PayloadType" pt (cost=0.00..4.01 rows=201 width=17) (actual time=0.018..0.043 rows=201 loops=1)
 Planning Time: 0.996 ms
 Execution Time: 365.221 ms

O
nly m

ajorIO
V

m
ajor- &

 m
inorIO

V

Investigating Query Plans - I

26

-> Limit (cost=0.56..0.82 rows=1 width=61) (actual time=0.014..0.014 rows=1 loops=201)
 -> Index Only Scan using combo_covering_idx on "PayloadIOV" pi
 (cost=0.56..232.55 rows=876 width=61) (actual time=0.013..0.013 rows=1 loops=201)
 Index Cond: ((payload_list_id = pl.id) AND (major_iov < 100000000))
 Heap Fetches: 0

-> Limit (cost=0.56..4.53 rows=1 width=61) (actual time=1.815..1.815 rows=1 loops=201)
 -> Index Only Scan using combo_covering_idx on "PayloadIOV" pi
 (cost=0.56..3484.55 rows=876 width=61) (actual time=1.815..1.815 rows=1 loops=201)
 Index Cond: (payload_list_id = pl.id)
 Filter: ((major_iov < 100000000) OR ((major_iov = 100000000) AND (minor_iov <= 100000000)))
 Rows Removed by Filter: 24669
 Heap Fetches: 0

Investigating Query Plans - II

Index Condition & Filter

Index Condition Only

27

Raw SQL - Combined IOV Column
• Preselection on major- & minor IOV (AND / OR)

• Scales with entries to consider

• Query uses ‘Filter’

• Preselection on single column (<=)

• Constant time

• Query uses ‘Index Condition’

• Combine major- and minor IOV into single column:

bigint bigint decimal(38, 19)

• Fast across all values while selecting on both

