

Model fitting in Python with zfit and Scikit-HEP

jonas.eschle@cern.ch

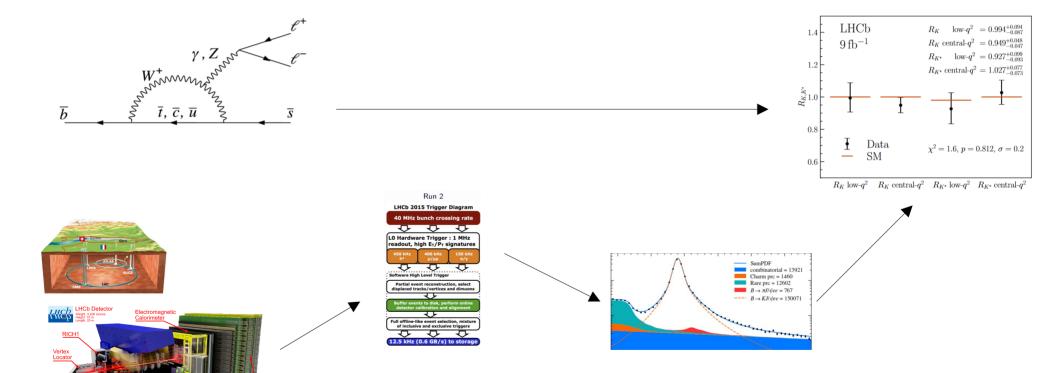
HEP Analysis

Muon Stations

Hadronic

Calorimeter

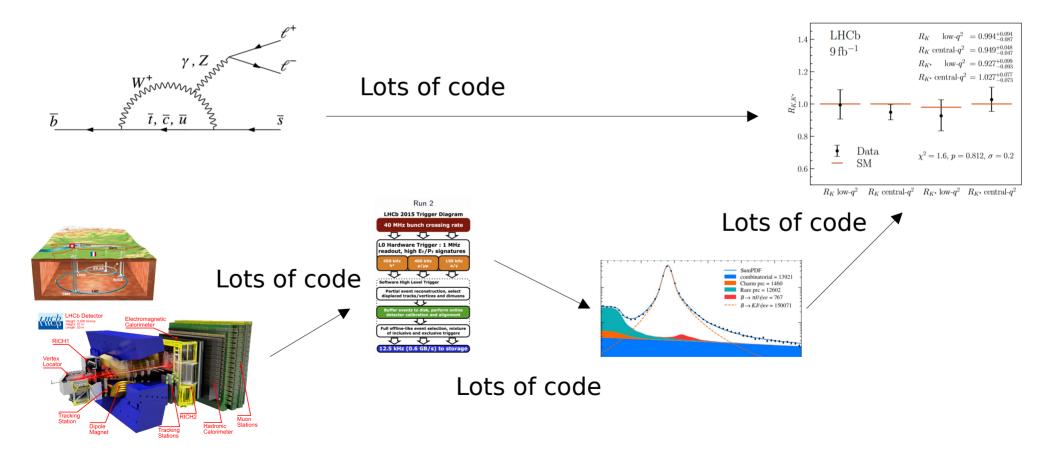
Tracking Stations



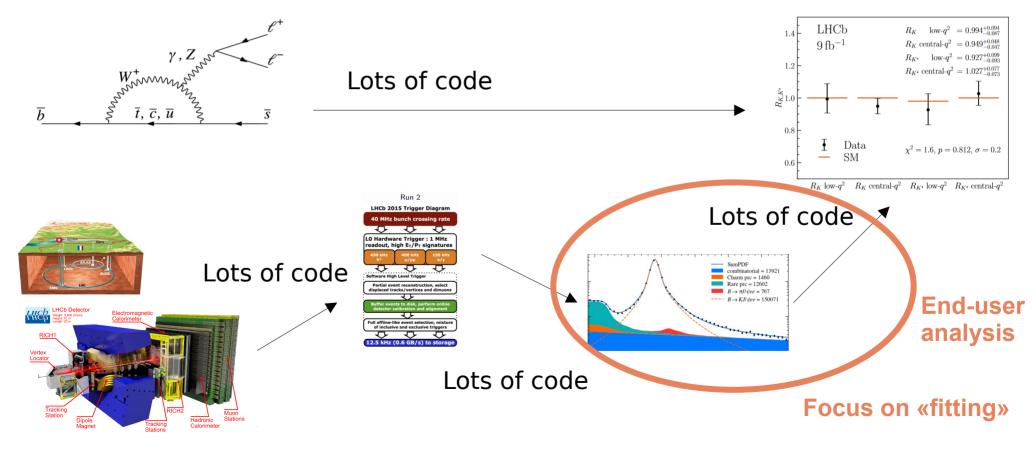
Tracking Station

Dipole Magnet

HEP Analysis

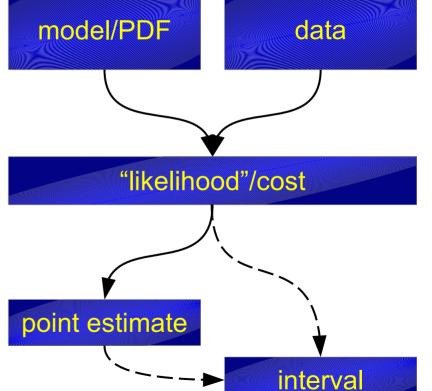


HEP Analysis



«statistical inference» Variety of possibilities Focus on likelihood based (as is very common in HEP)

«Fitting»



Analyses transition from C++ to Python Many, non-monolithic packages

Talk by Eduardo

Scikit HEP

Philosophy: extend/build on existing ecosystem

Analyses transition from C++ to Python Many, non-monolithic packages

Talk by Eduardo

<u>HEP fitting libraries still in C++</u> Strong libraries, but mediocre bindings, not «pythonic»

Analyses transition from C++ to Python Many, non-monolithic packages

Talk by Eduardo

<u>HEP fitting libraries still in C++</u> Strong libraries, but mediocre bindings, not «pythonic»

Why even move to Python?

Analyses transition from C++ to Python Many, non-monolithic packages

Talk by Eduardo

<u>HEP fitting libraries still in C++</u> Strong libraries, but mediocre bindings, not «pythonic»

FILE AAPV

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN - DD /89/ 18

May 16, 1989

The Comparison and Selection of Programming Languages for High Energy Physics Applications

Bebo White

Data Handling Division, CERN and SLAC Computing Services

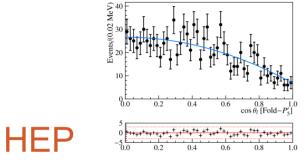
10.1016/0010-4655(89)90283-X

2018

Zanella [32] has said " If HEP wishes to keep to its level of achievement, credibility and excellence, then it needs an injection of bright young computer-wise scientists and engineers." This means that HEP cannot become "an island." HEP applications must be able to utilize "state of the art" facilities in all areas of applicability including data processing. HEP must be able to take advantage of the technological advancements in other arenas of science and engineering. Many of these advancements are occurring in fields which are presently *not software compatible* with HEP. Much of the work being done in embedded systems with Ada or telecommuni-

16 May 2024

Analyses transition from C++ to Python <u>HEP fitting libraries still in C++</u> Many, non-monolithic packages Strong libraries, but mediocre bindings, not «pythonic» Scikiť Talk by Eduardo RooFit TensorProb Python packages - no advanced features mlfit TensorFlow Analysis carl - «Python too slow» scipy probfit TensorFlow Probability **Non-HEP HEP** Python 2018 16 May 2024 Model fitting in Python with zfit and Scikit-HEP



advanced features, simply extendable

Scalable

large data, complex models

5 years ago

first presentation HSF/WLCG Workshop

2 scalable pythonic fitting

Jonas Eschle

jonas.eschle@cern.ch

In collaboration with A. Puig, R. S. Coutinho, N. Serra

University of Zurich^{uz∺}

Swiss National Science Foundation

5 years ago

first presentation HSF/WLCG Workshop

- Beta stage, usable! (already used in LHCb analyses)
 - Not feature complete, but API stabilizing
- · Contributions in form of feedback and criticism very welcome
 - API, use-cases, bugs,...
 - Any crazy idea!

It's about a reliable library

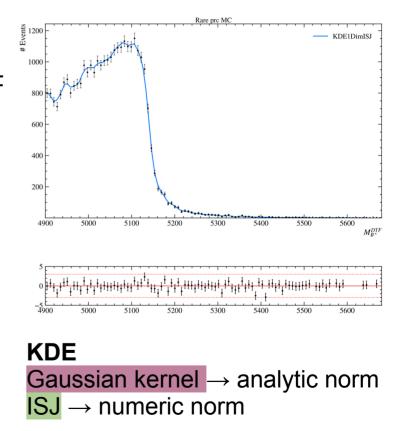
«we need to get it working fast»

- Binned (vs histfactory) vs unbinned
 - Refers to data, cost/loss/likelihood and PDF
 - Unbinned data: product of probabilities
 - Binned data: «counting experiments»

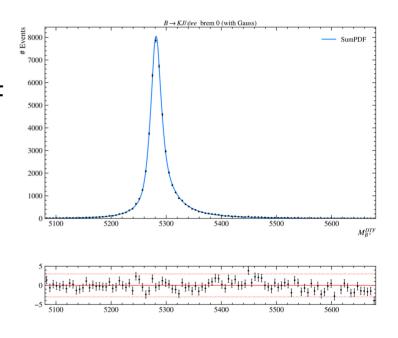
- Binned (vs histfactory) vs unbinned
 - Refers to data, cost/loss/likelihood and PDF
 - Unbinned data: product of probabilities
 - Binned data: «counting experiments»
- Template vs analytic
 - Shape from (simulation) sample vs closed-form function

- Binned (vs histfactory) vs unbinned
 - Refers to data, cost/loss/likelihood and PDF
 - Unbinned data: product of probabilities
 - Binned data: «counting experiments»
- Template vs analytic
 - Shape from (simulation) sample vs closed-form function
- Analytical vs numerical normalization
 - Bin or closed-form integral vs numerical

- Binned (vs histfactory) vs unbinned •
 - Refers to data, cost/loss/likelihood and PDF
 - Unbinned data: product of probabilities
 - Binned data: «counting experiments»
- Template vs analytic
 - Shape from (simulation) sample vs closed-form function
- **Analytical vs numerical normalization** lacksquare
 - Bin or closed-form integral vs numerical

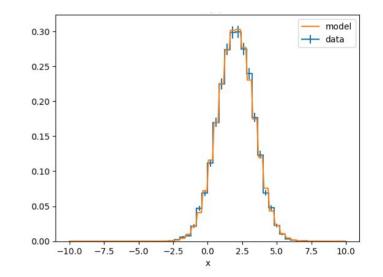


- Binned (vs histfactory) vs unbinned
 - Refers to data, cost/loss/likelihood and PDF
 - Unbinned data: product of probabilities
 - Binned data: «counting experiments»
- Template vs analytic
 - Shape from (simulation) sample vs closed-form function
- Analytical vs numerical normalization
 - Bin or closed-form integral vs numerical



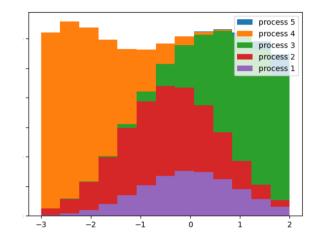
Double Crystalball

- Binned (vs histfactory) vs unbinned
 - Refers to data, cost/loss/likelihood and PDF
 - Unbinned data: product of probabilities
 - Binned data: «counting experiments»
- Template vs analytic
 - Shape from (simulation) sample vs closed-form function
- Analytical vs numerical normalization
 - Bin or closed-form integral vs numerical



(binned) Gaussian fit to histogram

- Binned (vs histfactory) vs unbinned
 - Refers to data, cost/loss/likelihood and PDF
 - Unbinned data: product of probabilities
 - Binned data: «counting experiments»
- Template vs analytic
 - Shape from (simulation) sample vs closed-form function
- Analytical vs numerical normalization
 - Bin or closed-form integral vs numerical

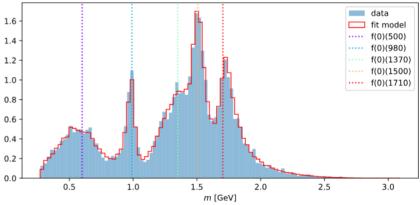


Stacked histograms PDFs

pyhf-like models

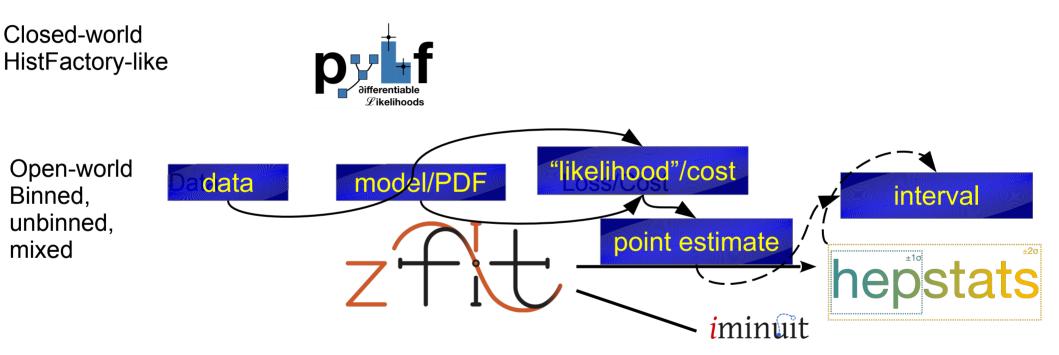
- One extreme: HistFactory model (pyhf)
 - Template, binned, analytic normalization
 - Assumption: Bins «free-standing», not next to each other
- «Closed-world» fitter
 - Limited scope, specialized on 80%+ use-case in CMS/ATLAS
 - extremely powerful/tested, serializable

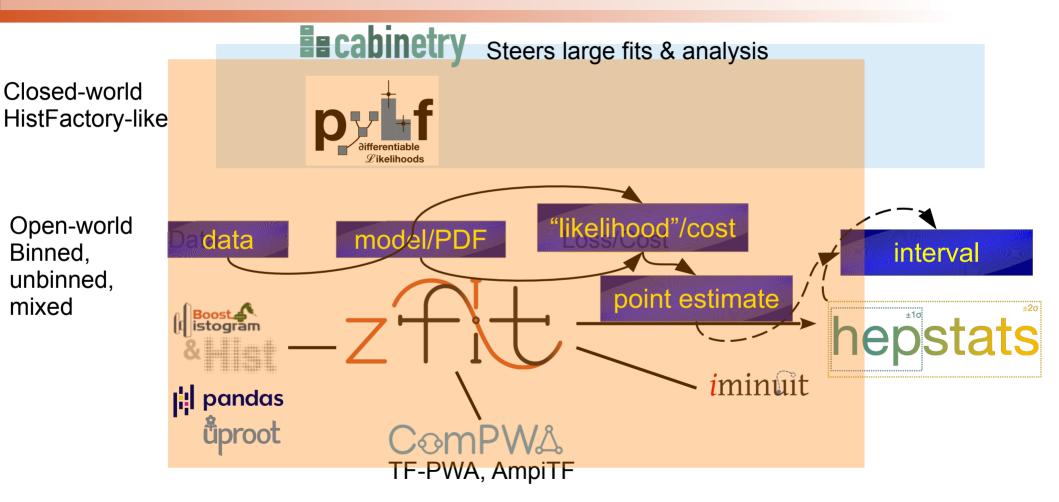
- Binned (vs histfactory) vs unbinned
 - Refers to data, cost/loss/likelihood and PDF
 - Unbinned data: product of PDFs
 - Binned data: «counting experiments»
- Template vs analytic
 - Shape from (simulation) sample vs closed-form function
- Analytical vs numerical normalization
 - Bin or closed-form integral vs numerical

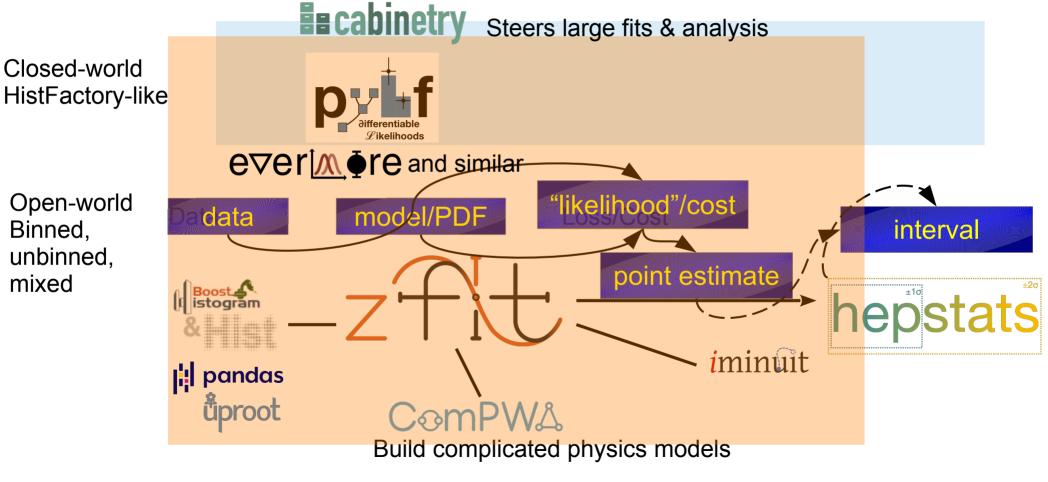


Partial wave analysis

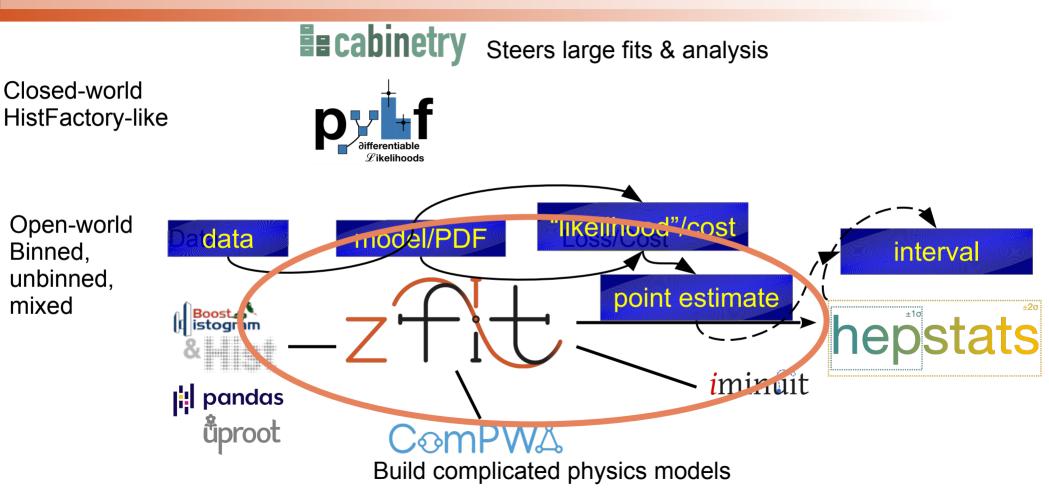
- The other extreme: amplitude analysis (ComPWA, ...)
 - Unbinned, analytic, numerical normalisation
 - Description of observable based on amplitude, can be 1k + lines
- Fitting is also hard
 - Fitting time (~100 parameters): hours/days, up to weeks (one fit)
 - Bottleneck: evaluation of PDF







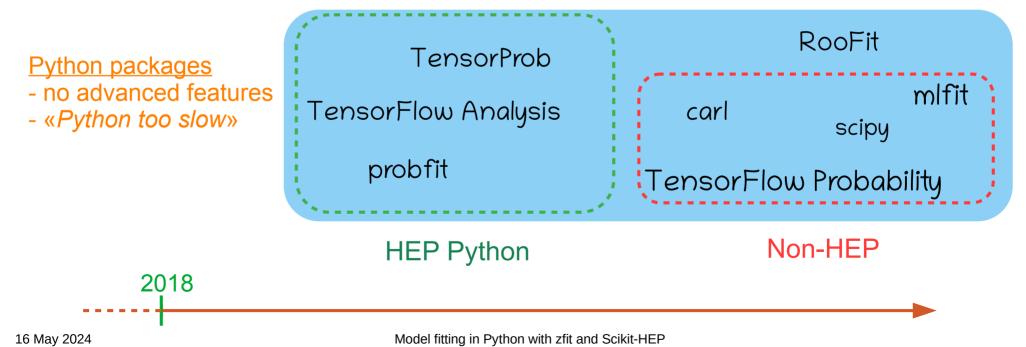
PyHEP.dev 2023 fitting tools - zfit

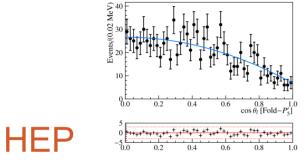


Analyses transition from C++ to Python Many, non-monolithic packages

Talk by Eduardo

<u>HEP fitting libraries still in C++</u> Strong libraries, but mediocre bindings, not «pythonic»

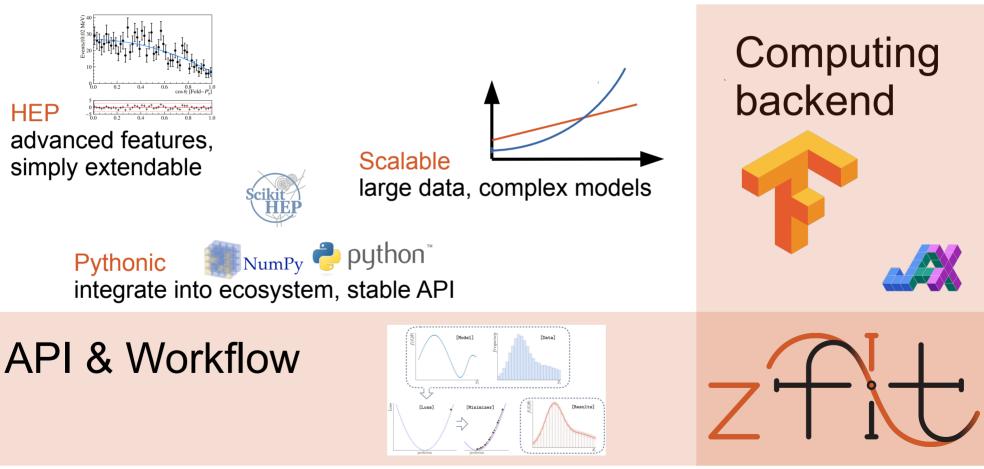


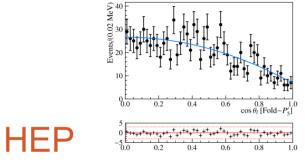


advanced features, simply extendable

Scalable

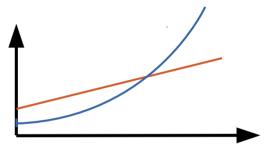
large data, complex models





advanced features, simply extendable

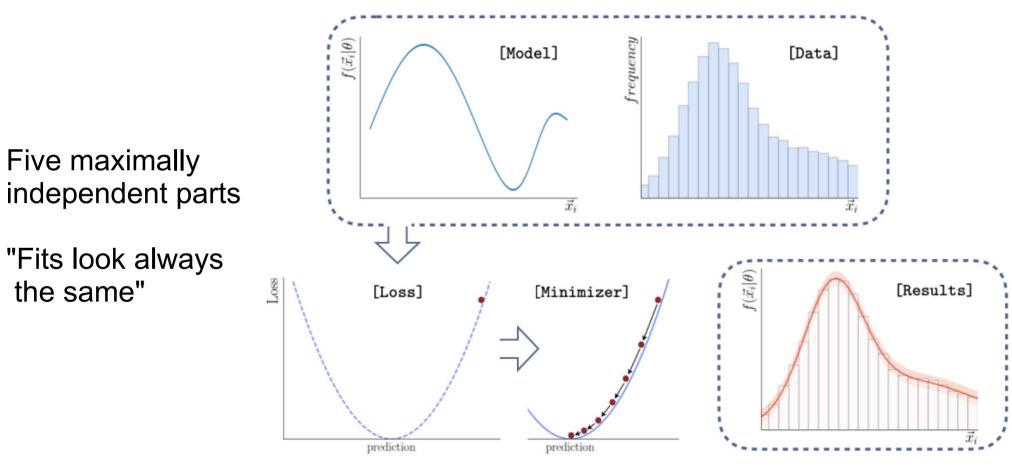
Scalable



large data, complex models

Pythonic NumPy Python[™] integrate into ecosystem, stable API

API & Workflow



Complete fit

normal_np = np.random.normal(2., 3., size=10_000)

```
obs = zfit.Space("x", limits=(-2, 3))
```

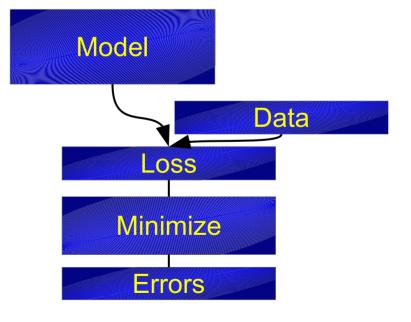
```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

```
param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()
```



Complete fit: Model

normal_np = np.random.normal(2., 3., size=10_000)

obs = zfit.Space("x", limits=(-2, 3))

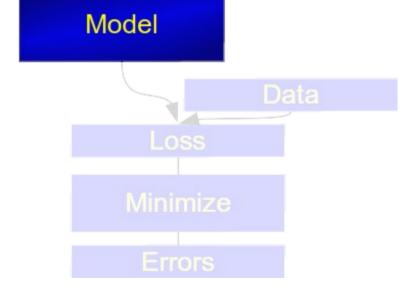
```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()



Complete fit: Data

normal_np = np.random.normal(2., 3., size=10_000)

```
obs = zfit.Space("x", limits=(-2, 3))
```

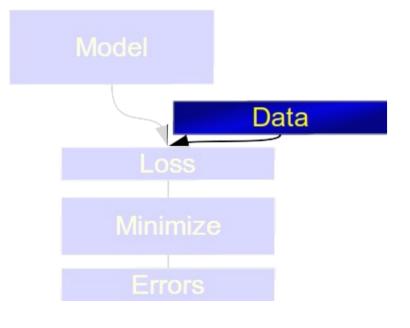
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

```
param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()
```



16 May 2024

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)

Complete fit: Loss

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

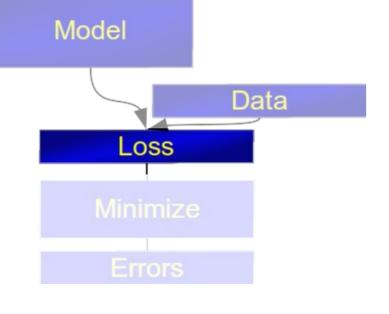
obs = zfit.Space("x", limits=(-2, 3))

mu = zfit.Parameter("mu", 1.2, -4, 6)

sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)

param_errors = result.hesse() param_errors_asymmetric, new_result = result.errors()

Model fitting in Python with zfit and Scikit-HEP



Complete fit: Minimization


```
obs = zfit.Space("x", limits=(-2, 3))
```

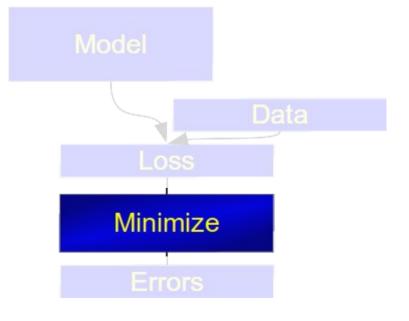
```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()



Complete fit: Result

normal_np = np.random.normal(2., 3., size=10_000)

```
obs = zfit.Space("x", limits=(-2, 3))
```

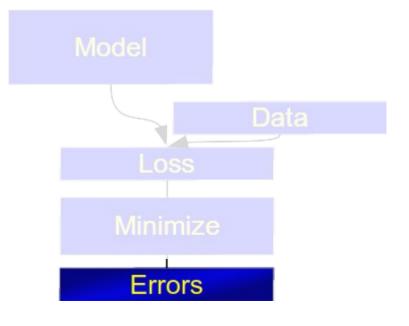
```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

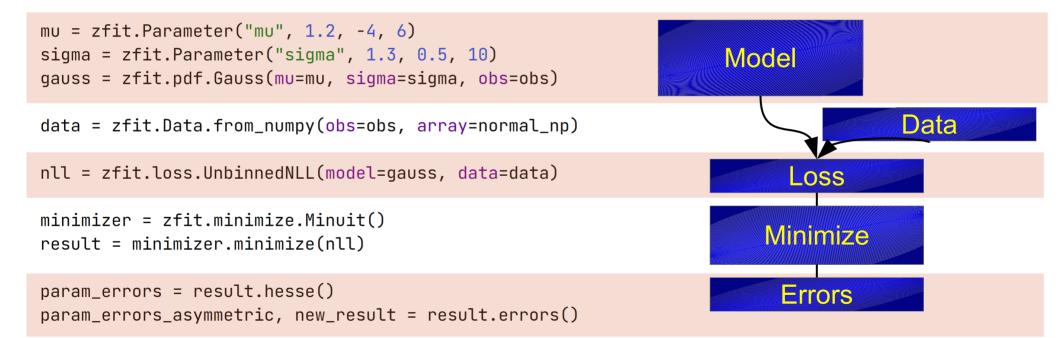
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

```
param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()
```



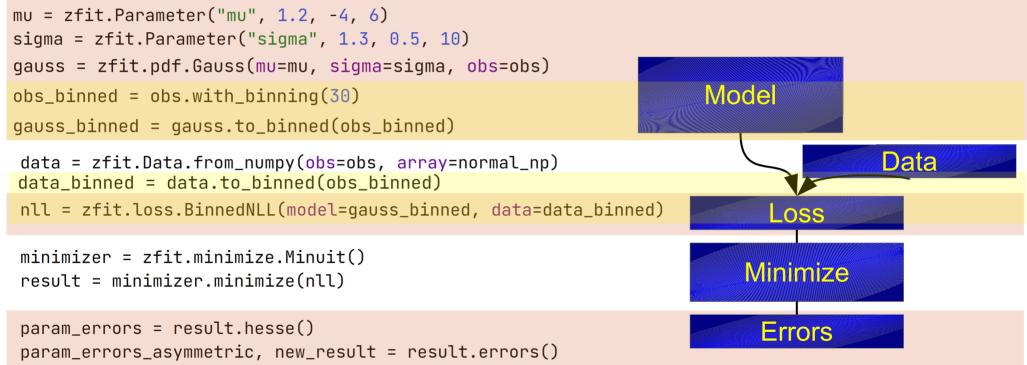
Basic API example



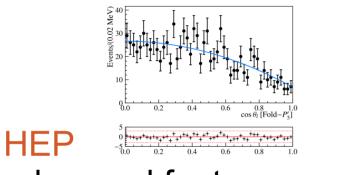
result.hesse() symmetric, new_result = result.errors() Model fitting in Python with zfit and Scikit-HEP

Basic API example

Going binned



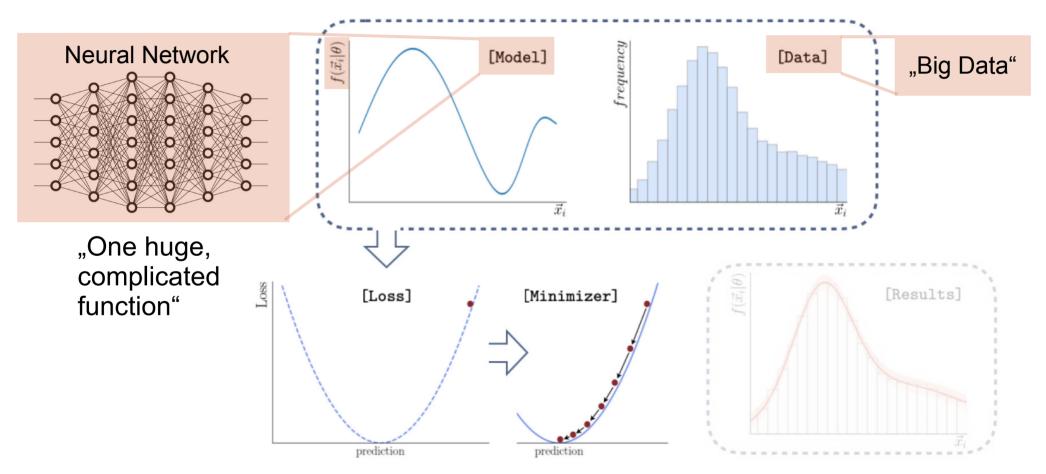
HEP Model Fitting in Python



advanced features, simply extendable

Scalable large data, complex models

Deep Learning



CHEP 2019 Adelaide

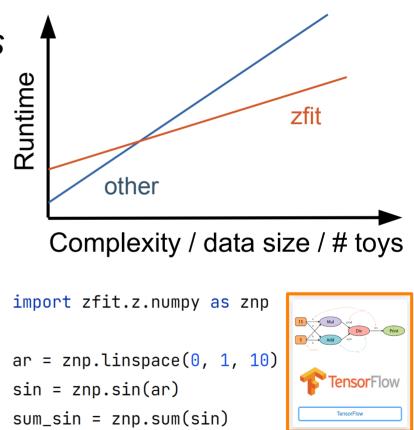
Scalable: Performance

Use same backend as ML uses

- Numpy-like backend TensorFlow (JAX)
 - JIT compiled, CPU or GPU
 - Automatic gradient

Single, simple fit "slow"

- 0.01 or 1 sec not relevant
- 1 or 10 hours relevant

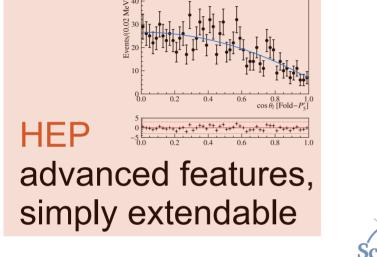


Delegating the workload

		L.
Ζ		

	C++ library	Numpy based	zfit
HEP specific content/API			
Models		SciPy	TF Probability
Gradients	CLAD		
Computational optimizations			
Parallelization/GPU		∲Numba 💭 NumPy	TensorFlow Intel NUDIA.
Low level handling		n python	

HEP Model Fitting in Python



Scikit HEP

large data, complex models

Scalable

Complete fit

normal_np = np.random.normal(2., 3., size=10_000)

```
obs = zfit.Space("x", limits=(-2, 3))
```

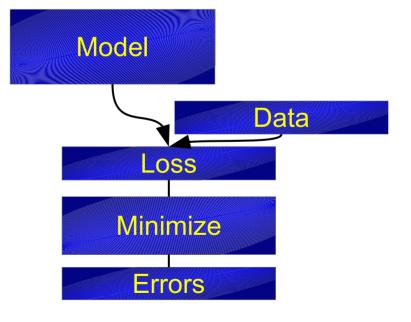
```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

```
param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()
```



Complete fit: Model

normal_np = np.random.normal(2., 3., size=10_000)

obs = zfit.Space("x", limits=(-2, 3))

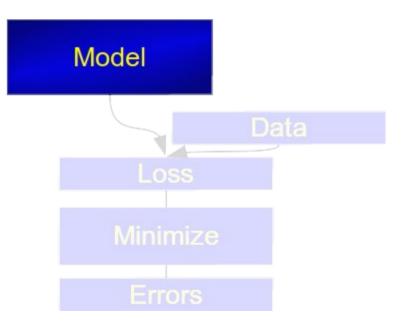
```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()

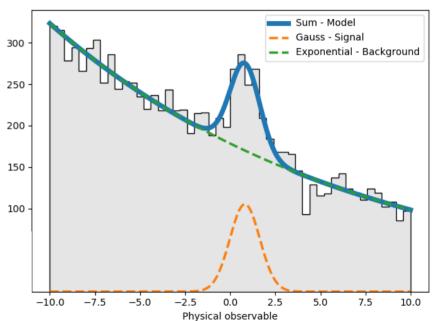


Example: Mass fit

- Sum, Product, (Convolution)
- Gauss, (double) Crystalball,...
- Exponential, Polynomials,...
- Histograms, SplineInterpolation,...

```
lambd = zfit.Parameter("lambda", -0.06, -1, -0.01)
frac = zfit.Parameter("fraction", 0.3, 0, 1)
```

```
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
exponential = zfit.pdf.Exponential(lambd, obs=obs)
model = zfit.pdf.SumPDF([gauss, exponential], fracs=frac)
```



59

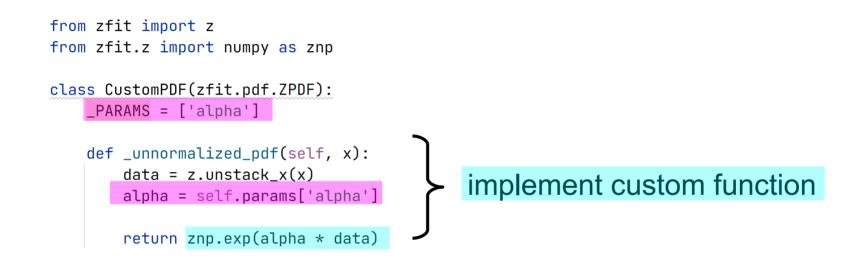
Example: Mass fit

- Sum, Product, *(Convolution)*
- Gauss, (double) Crystalball,...
- Exponential, Polynomials,...
- Histograms, SplineInterpolation,...

fr Good for out-of-the-box but...

does not cover even closely all HEP PDFs

Custom PDF



Custom PDF


```
from zfit import z
  from zfit.z import numpy as znp
   class CustomPDF(zfit.pdf.ZPDF):
       _PARAMS = ['alpha']
       def _unnormalized_pdf(self, x):
           data = z.unstack_x(x)
           alpha = self.params['alpha']
           return znp.exp(alpha * data)
custom pdf = CustomPDF(obs=obs, alpha=0.2)
integral = custom_pdf.integrate(limits=(-1, 2))
sample = custom pdf.sample(n=1000)
                                                           use functionality of model
         = custom_pdf.sample(n=1000)
sample
          = custom pdf.pdf(sample)
prob
```

16 May 2024

Custom PDF

from zfit import z from zfit.z import numpy as znp Example of zfit Base Classes class CustomPDF(zfit.pdf.ZPDF): PARAMS = ['alpha'] Can also override: def _unnormalized_pdf(self, x): • integrate \rightarrow integrate data = $z.unstack_x(x)$ • pdf \rightarrow pdf alpha = self.params['alpha'] • sample \rightarrow _sample return znp.exp(alpha * data) Or register integral custom pdf = CustomPDF(obs=obs, alpha=0.2) integral = custom_pdf.integrate(limits=(-1, 2)) use functionality of model = custom pdf.sample(n=1000) sample = custom pdf.pdf(sample) prob

zfit

Arbitrary analytic shapes

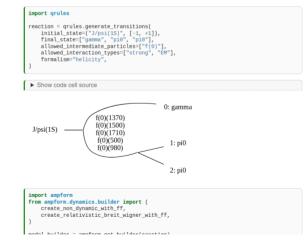

```
N OBS = 3
def unnormalized pdf(self, x):
    FL = self.params['FL']
    AT2 = self.params['AT2']
    P5p = self.params['P5p']
    costheta l, costheta k, phi = ztf.unstack x(x)
    sintheta k = tf.sgrt(1.0 - costheta k * costheta k)
    sintheta l = tf.sgrt(1.0 - costheta l * costheta l)
    sintheta 2k = (1.0 - \text{costheta } k + \text{costheta } k)
    sintheta 2l = (1.0 - costheta l * costheta l)
    sin2theta k = (2.0 * sintheta k * costheta k)
    cos2theta l = (2.0 * costheta l * costheta l - 1.0)
    pdf = ((3.0 / 4.0) * (1.0 - FL) * sintheta 2k +
           FL * costheta k * costheta k +
           (1.0 / 4.0) * (1.0 - FL) * sintheta 2k * cos2theta l +
           -1.0 * FL * costheta k * costheta k * cos2theta l +
           (1.0 / 2.0) * (1.0 - FL) * AT2 * sintheta 2k *
           sintheta 2l * tf.cos(2.0 * phi) + tf.sgrt(FL * (1 - FL))
           * P5p * sin2theta k * sintheta l * tf.cos(phi))
```

For example, create amplitude with ComPWA and zfit

Amplitude analysis with zfit

Show code cell content

Formulating the model



return pdf

class P5pPDF(zfit.pdf.ZPDF):

PARAMS = ['FL', 'AT2', 'P5p']

65

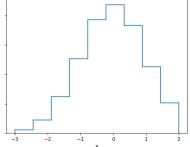
- Success story of Universal Histogram Interface (UHI)
- Modelled after/ compatible with **boost-histogram/hist/UHI**

h_back = pdf.to_hist()

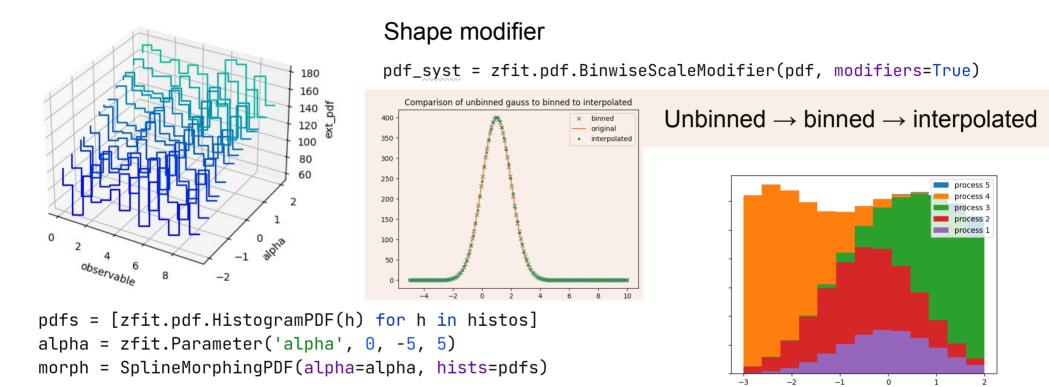
Axes, names,

Binned models

```
h = hist.Hist(hist.axis.Regular(3, -3, 3, name="x", flow=False),
              hist.axis.Regular(2, -5, 5, name="y", flow=False))
                                                                    mplhep.histplot(h_back)
x = np.random.randn(1_000_000)
y = 0.5 * np.random.randn(1_000_000)
h.fill(x=x, y=y)
                                             ...and back
pdf = zfit.pdf.HistogramPDF(data=h)
```

More histograms



pdfs = [zfit.pdf.HistogramPDF(h) for h in histos]
sumpdf = zfit.pdf.BinnedSumPDF(pdfs)

Complete fit: Data

normal_np = np.random.normal(2., 3., size=10_000)

```
obs = zfit.Space("x", limits=(-2, 3))
```

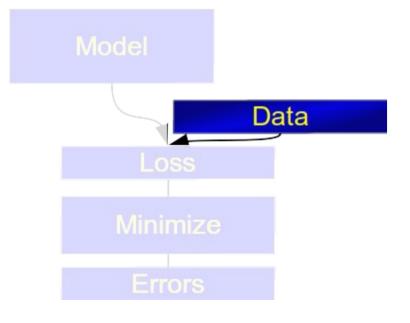
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()



16 May 2024

Complete fit: Data

- From different sources
 - Hist, numpy, Pandas, ROOT, ...
 - Can directly be given
- Sampled from a model (toy studies)
 data = model.create sampler(n sample, limits=obs)
- UHI compatible!

```
binneddata = binnedpdf.sample()
mplhep.histplot(binneddata)
```

Use the HEP/Python ecosystem for preprocessing

16 May 2024

normal_np = np.random.normal(2., 3., size=10_000)

Complete fit: Loss

obs = zfit.Space("x", limits=(-2, 3))

```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

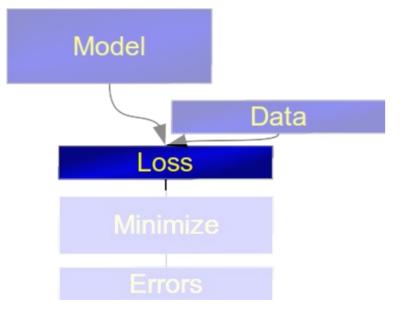
data = zfit.Data.from_numpy(obs=obs, array=normal_np)

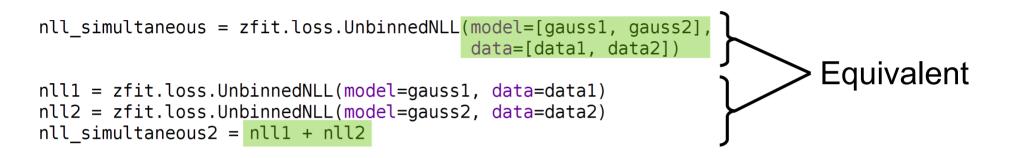
nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

param_errors = result.hesse() param_errors_asymmetric, new_result = result.errors()

Model fitting in Python with zfit and Scikit-HEP





(arbitrary) constraints supported, added to loss

constr = GaussianConstraint(params=params, observation=observed, uncertainty=sigma)
nll = zfit.loss.BinnedNLL(model=model, data=data, constraint=constr)

Directly compatible with iminuit

Complete fit: Minimization

normal_np = np.random.normal(2., 3., size=10_000)

```
obs = zfit.Space("x", limits=(-2, 3))
```

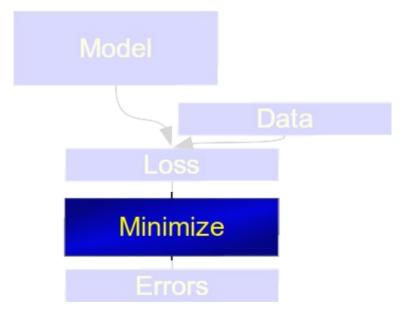
```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

```
param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()
```



result = minimizer.minimize(func, params)

Model fitting in Python with zfit and Scikit-HEP

minimizer = zfit.minimize.IpyoptV1() minimizer = zfit.minimize.Minuit() minimizer = zfit.minimize.ScipyTrustConstrV1() minimizer = zfit.minimize.NLoptLBFGSV1()

Can use zfit loss, but also pure Python function

- Unified API: zfit minimizers, simply switch
- SciPy inferface "a bit messy", different convergence criterion, etc...
- Problem: many, non-unified minimizer APIs

Complete fit: Result

normal_np = np.random.normal(2., 3., size=10_000)

```
obs = zfit.Space("x", limits=(-2, 3))
```

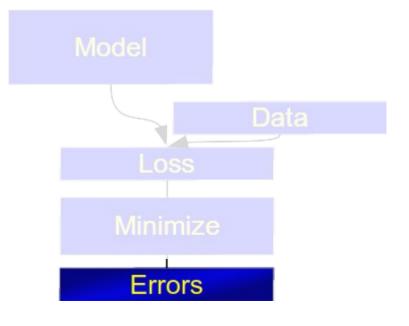
```
mu = zfit.Parameter("mu", 1.2, -4, 6)
sigma = zfit.Parameter("sigma", 1.3, 0.5, 10)
gauss = zfit.pdf.Gauss(mu=mu, sigma=sigma, obs=obs)
```

data = zfit.Data.from_numpy(obs=obs, array=normal_np)

nll = zfit.loss.UnbinnedNLL(model=gauss, data=data)

```
minimizer = zfit.minimize.Minuit()
result = minimizer.minimize(nll)
```

```
param_errors = result.hesse()
param_errors_asymmetric, new_result = result.errors()
```



Inference library for hypothesis tests

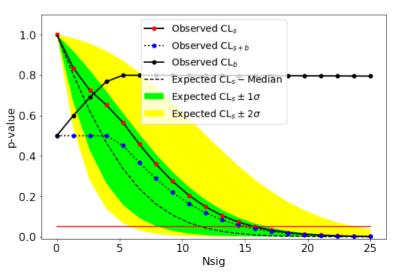
- Takes model, data, loss from zfit
- sWeights, CI, limits, ...

hepstats

• asymptotic or toys calculator

```
calculator = AsymptoticCalculator(loss, minimizer)
poinull = POIarray(Nsig, np.linspace(0.0, 25, 20))
poialt = POI(Nsig, 0)
ul = UpperLimit(calculator, poinull, poialt)
ul.upperlimit(alpha=0.05, CLs=True)
```


74

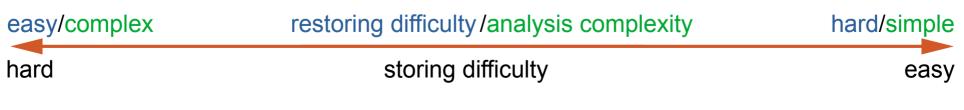


HS³

HEP Statistics Serialization Standard

Preservation and interoperability

- Goal: restore and exchange likelihood information
 - Use different frameworks (connect across languages)
 - Easily modify likelihoods (theorists!)
- Question: how? Which format?
 - Human-readable vs binary, scripts vs description, virtual machines vs software dependencies, paper vs electronic,...



HEP Statistics Serialization Standard Human-readable & preservable format for HEP statistics

- By RooFit, zfit, pyhf and bat.jl; developing stage
- Explore and define common ground
 - What is a Gaussian/Gauss/Normal? Sum? Variable?
 - Defining channels and nuisance parameter (HistFactory-like)
- Best effort base: «What works for all, works»

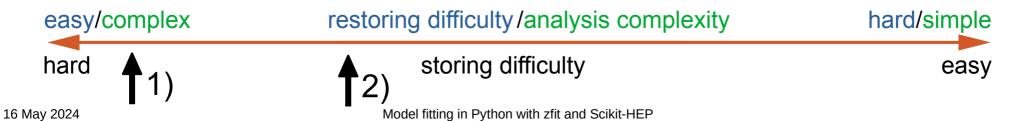
zfit serialization - HS3

1) Can dump/load (some) PDFs HS3-like

2) Custom functions currently pickled, in future as SymPy/Mathematica

- Project already achieved that
- ComPWA for amplitudes in Sympy

```
'pdfs': {'SumPDF': {'pdfs': [{'extended': 'n_sig',
                                 'mu': 'mu',
                                 'sigma': 'sigma',
                                 'type': 'Gauss',
                                 'x': 'x'},
                               {'extended': 'n_bkg',
                                 'lam': 'lambda',
                                 'type': 'Exponential',
                                 'x': 'x'}],
                       'type': 'SumPDF'}},
'variables': {'lambda': {'max': -0.009999999776482582,
                         'min': -1.0,
                          'name': 'lambda',
                          'step_size': 0.001,
                          'value': -0.06294756382703781},
```



Conclusion

- Python HEP fitting ecosystem built from multiple libraries
- zfit «open-world» fitter, well integrated with the ecosystem
- Interoperability & building on existing Python scientific ecosystem is key
- HS³ likelihood serialization standard

mu': 'mu'

'x': 'x'},

'x': 'x'}], 'type': 'SumPDF'}}.

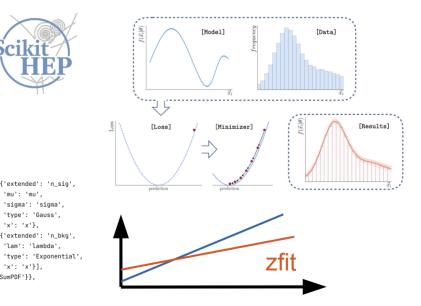
build stable model fitting ecosystem for HEP

- Recent addition of binned/mixed fits
- Human-readable serialization

HS3 JSON serialization (WIP) **Pickling of results** Custom dumping simple Serialization of toys

• Planning for zfit V2

Conclusion



Backup Slides

Model fitting in Python with zfit and Scikit-HEP

- Backend & TF
- Amplitude
- K*II toys
- K*mumu Wilson coeffs
- Other fitting packages
- Zfit (associated) packages
- Zfit project
- Zfit elements examples

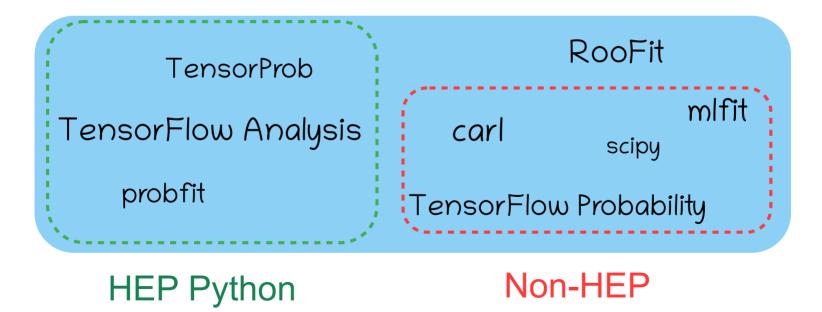
Model fitting in Python with zfit and Scikit-HEP

zfit features

- Extended fits, Chi2, binned, unbinned, mixed
- PDFs convertable binned \leftrightarrow unbinned (including to hist), mixed
- Multidimensional
- Any backend supported (numpy-like), optimal with TF currently
- Sample from PDF
- Arbitrary constraints (custom made)
- Custom PDF: define shape \rightarrow auto normalized, sampling etc.
- Automatic/numerical gradient
- Different minimizers, optimized API
- JIT/eager support

Fitting in Python

A lot of projects are around



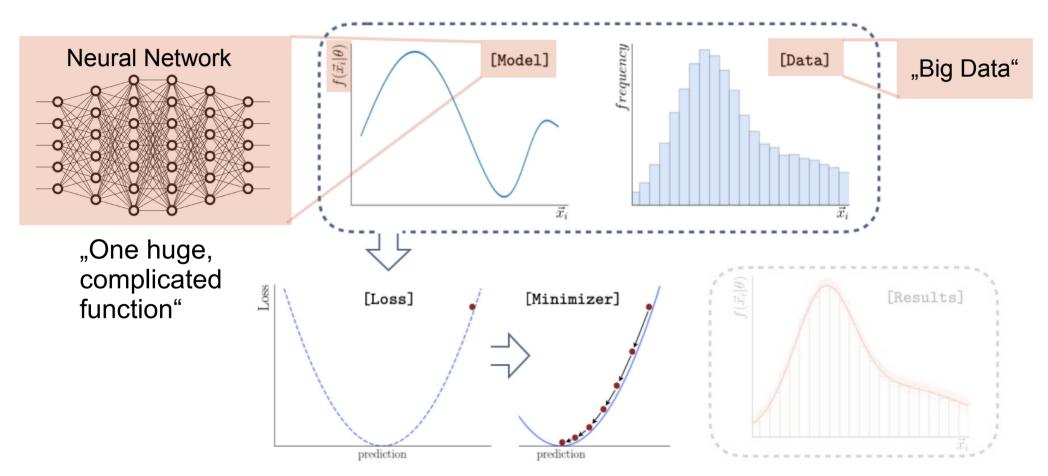
Backend & TensorFlow

Backend: a comparison

- TensorFlow: supports the most features to this day
- PyTorch: missing advanced math (complex support, ...)
- Numpy/SciPy: Too slow, no gradient, no GPU
- JAX: very promising, but no globals (cache,...), only static known shapes (adaptive algorithms, accept-reject...), only JAX/Numpy arrays compatible
- SymPy: limited to mathematical expressions (no control-flow,...) but can convert to any other backend (used by TensorWaves)

Deep Learning lessons for model fitting

Deep Learning



Can we express model fitting as static graphs?

Yes!

Definition of computation, shape etc. (add static knowledge)
 Compilation of the graph

3) Execution of computation (re-use optimized graph)

Inside TF, hidden to end-user

HPC: the more is know *before* the execution, the better

TensorFlow takes care of *how* to use this knowledge

Graph elements

... do not have to be constant!

Parameters

Can change their value

Random numbers

Generate newly on every graph execution: MC integration,...

Control flow (if, while)

Steer the execution: Accept-reject sampling (while), etc.

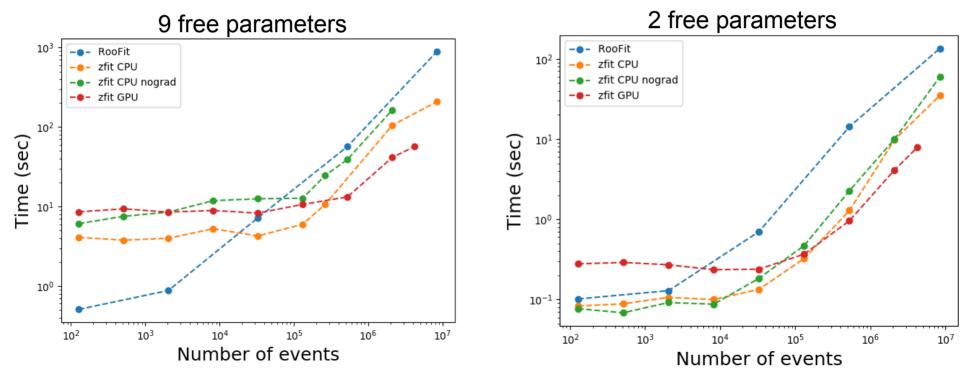
Static, not constant

Deep Learning vs. Model Fitting

Similarity	Complicated Models	Large Data	Composed loss	Minimization	Results and uncertainties
HEP	Non-trivial functions	Whole Dataset	simultaneous, constraints	Global min, 2 nd derivative algorithm	Hesse, profiling
Deep Learning	Combine many, trivial functions	Many, small Batches	Anything! (GANs, RL,)	Local (!) min, 1 th derivative, many steps	None
Conclusion					

Scalability: Performance

Fitting time (lower is better): RooFit vs. zfit



Amplitude

Angular toys

$B^0 \rightarrow K^{*0}l^+l^-$ angular: toy study

Sensitivity study

- draw toys (sample) from PDF
- Fit to sample

```
for i in range(ntoys):
```

set initial sampling values
for param in params:
 param.set_value(...)

sampler.resample()

```
# set random initial values
for param in params:
    param.set_value(...)
```

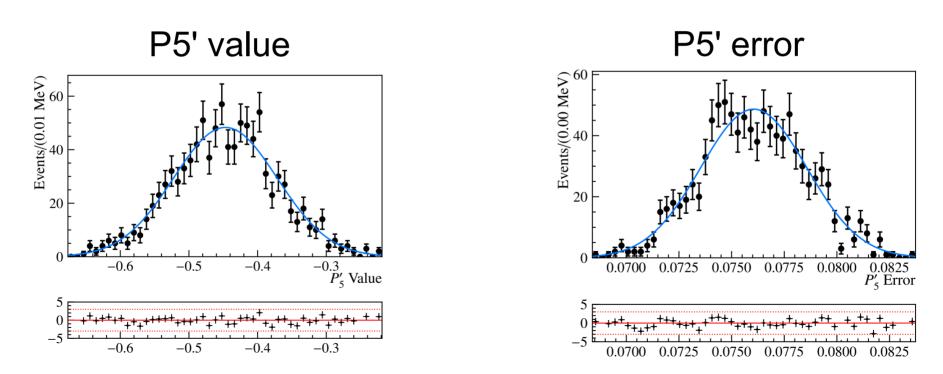
result = minimizer.minimize(nll)

if result.converged:

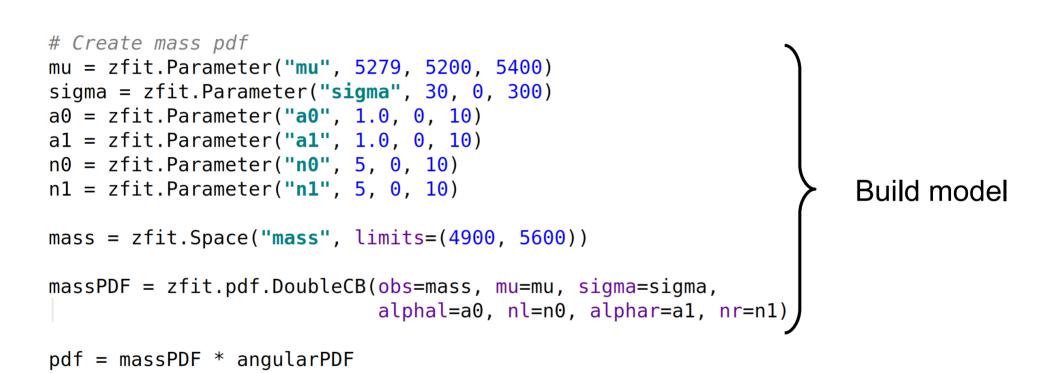
. . .

 $B^0 \rightarrow K^{*0}l^+l^-$ angular: toy study

Result of toy study



Extending with a mass shape



Fitting libraries and comparison

Python model fitting in HEP

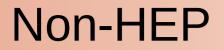
- Scalable: large data, complex models
- Pythonic: use Python ecosystem/language
- Specific HEP functionality:
 - Normalization: specific range, numerical integration,...
 - Composition of models
 - Multiple dimensions
 - Custom models
 - Non-trivial loss (constraints, simultaneous,...)

HEP Python projects

Probfit, TensorProb,...

- Lack generality and extendibility
- "experimental", but great proof of concept
 - API and Python in general
 - Computational backends (e.g. Cython, TensorFlow)
 - Building an ecosystem (iminuit,...)

General impression in
 comparison with other
 HEP packages



Scipy, Imfit, TensorFlow Probability,...

- Lack of specific HEP features
 - Normalization: specific range, numerical integration,...
 - Composition of models
 - Multiple dimensions
 - Custom models
- Irrelevant functionality supported in API
 - Survival function, ...

zfit related packages

phasespace

- Package for phasespace generation of particles
- Covers functionality of TGenPhaseSpace (and more)
- Pure Python (& TensorFlow), integrates seemless with zfit

```
pion = GenParticle('pi+', PION_MASS)
kaon = GenParticle('K+', KAON_MASS)
kstar = GenParticle('K*', KSTARZ_MASS).set_children(pion, kaon)
gamma = GenParticle('gamma', 0)
bz = GenParticle('B0', B0_MASS).set_children(kstar, gamma)
```

```
weights, particles = bz.generate(n_events=1000)
```


Zfit: project description

Ecosystem: API & Workflow

Establish a stable API

- High level libraries (statistics, plotting,...)
 - "code against an interface, not an implementation"
- Replace each component
 - Allow other libraries to implement custom parts

Many discussions with community to avoid splitting/duplication

Pythonic

- Pure Python («pip install zfit»)
- Integrated into python ecosystem
 - Load ROOT files (uproot, no ROOT dependence!)
 - Use Minuit for minimization (iminuit)
 - Data preprocessing with Pandas DataFrame
 - Plotting with matplotlib
 - High level statistics (lauztat, more WIP)
- Extendable classes
 - e.g. custom PDF

Scalable: TensorFlow

- Deep Learning framework by Google
- Modern, declarative graph approach
- Built for highly parallelized, fast communicating CPU, GPU, TPU,... clusters
- Built to use «Big Data»

Zfit library examples

Minimize Python function

def func(x):
 x = np.array(x) # make sure it's an array
 return np.sum((x - 0.1) ** 2 + x[1] ** 4)

func.errordef = 0.5

params = [1, -3, 2, 1.4, 11]

```
result = minimizer.minimize(func, params)
```

Model, loss building

sum of two pdfs

sum_pdf = zfit.pdf.SumPDF([gauss, exponential], fracs=frac)

shared parameters

mu_shared = zfit.Parameter("mu_shared", 1., -4, 6)

gauss1 = zfit.pdf.Gauss(mu=mu_shared, sigma=sigma1, obs=obs)
gauss2 = zfit.pdf.Gauss(mu=mu_shared, sigma=sigma2, obs=obs)

simultaneous loss

nll1 = zfit.loss.UnbinnedNLL(model=gauss1, data=data1)
nll2 = zfit.loss.UnbinnedNLL(model=gauss2, data=data2)
nll_simultaneous2 = nll1 + nll2

From classical

to more TensorFlow

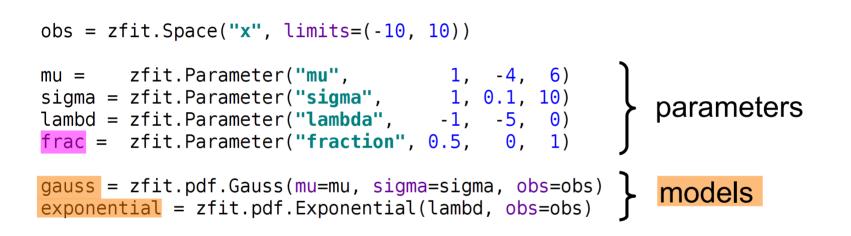
up to pure

TensorFlow

```
Simple combinations
func n = zfit.func.ZFunc(...) # pseudo code
func = func 1 + func 2 * func 3
Composite Parameter
pdf = zfit.pdf.Gauss(mu=tensor1, sigma=4)
Custom Loss
loss = zfit.loss.SimpleLoss(lambda: tensor loss)
```

=> use all of zfit functionality like minimizers

Model building



Simultaneous fit

