
traccc
Track Reconstruction on GPUs in Acts

Attila Krasznahorkay
on behalf of a lot of people…



(Classical) Track Finding 101
Clusterization, measurement 

and spacepoint creation Track seeding

Track finding

Ambiguity resolution

2



The Need For GPUs

● The sort of events that we will need to 
reconstruct during the HL-LHC, are 
the ones shown here

○ On which the combinatorics of our 
algorithms explode

3tt event in the ODD at μ = 200

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults


The Acts Parallelization R&D

● To explore fundamentally new ways for 
reconstructing particle tracks, we 
created a set of “standalone” projects

○ With the top reconstruction algorithms sitting in 
traccc, and all other projects serving various 
purposes for making that happen

● The overall goal is to demonstrate that 
we could run track reconstruction on 
GPUs without any shortcuts in 
reconstruction / physics quality

○ Using the same (type of) combinatorial Kalman 
filtering used by Acts, with detector geometry 
and magnetic field modeled at the same level 
of accuracy

4

Acts

traccc

detray

algebra-
plugins

vecmem

covfie

https://github.com/acts-project/traccc
https://github.com/acts-project/acts
https://github.com/acts-project/acts
https://github.com/acts-project/traccc
https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem
https://github.com/acts-project/vecmem
https://github.com/acts-project/covfie
https://github.com/acts-project/covfie


Base Projects

● Good technical work has happened in vecmem, 
algebra-plugins and covfie

○ But those are not the main things for today..

● vecmem introduced basic support for SoA containers
○ But they did not make their way into traccc yet

● algebra-plugins improved its vectorization support in host 
code

○ Both for auto- and explicit-vectorization

5

Current contributors:
Joana Niermann, Beomki Yeo, 
Stephen Swatman

https://github.com/acts-project/vecmem
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/covfie
https://github.com/acts-project/vecmem
https://github.com/acts-project/traccc
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem/tree/main/core/include/vecmem/edm
https://github.com/acts-project/algebra-plugins/pull/120


detray

● Is maybe our most ambitious project
● It provides a surface based geometry 

for tracking, with efficient navigation / 
propagation support between the 
surfaces

○ Including the management of surface 
material and magnetic field during the 
navigation

● All implemented without using “GPU 
hostile” programming methods

○ Virtual inheritance, dynamic memory 
allocation, etc.

6

Current contributors:
Joana Niermann, Beomki Yeo, Andreas Salzburger, 
Frederik Verdoner Barba, Eleni Xochelli, Stephen Swatman

https://github.com/acts-project/detray


7

Latest Developments

● After updates in Acts and ODD, created 
JSON descriptions of the ODD for Detray

○ Including the properly defined “surface grids” and 
“material maps”

○ Still a little manually for these tests, but will make 
it a lot more automatic soon. Making it possible 
to convert any “Acts geometry” to a Detray one.

● Can now exactly reproduce the behaviour 
of Acts’s existing tracking geometry code

○ Material mapping comparisons on device to 
some soon, current comparisons all done in host 
code.

● Tons of technical developments done to 
make it all happen…

η

Acts & Detray

ra
d.

 le
ng

th

ODD surfaces and grids

https://gitlab.cern.ch/acts/OpenDataDetector


traccc

● It is our main repository, combining 
the capabilities of all of the other ones

○ GPU code development initially happens in 
CUDA most of the time, then generalising it 
to work with SYCL, Alpaka, etc. as well.

● As was the original goal, significant 
code sharing is achieved between the 
host and device, and the different 
device implementations

○ Technically in all cases happening through 
shared, inlined functions (working on “GPU 
friendly” data types)

8

Current contributors:
Beomki Yeo, Joana Niermann, Ryan Joseph Cross, Stewart 
Martin-Haugh, Shima Shimizu, Sylvain Joube, Stephen 
Swatman

https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/sycl/
https://alpaka.readthedocs.io
https://github.com/acts-project/traccc


Reconstruction Algorithm Status

● The full ODD reconstruction chain 
now works on the host and with 
CUDA! 🎉

○ Without ambiguity resolution... For that we 
still only have an algorithm for the host.

○ Technically the “full CUDA chain” can fit on 
a single screen! 😜

● Geant4 simulation files for its input 
can now be produced using Acts’s 
main branch

○ See: acts-project/acts#3169

9

https://github.com/acts-project/acts/pull/3169
https://github.com/acts-project/traccc/tree/main/device
https://github.com/acts-project/traccc/blob/main/examples/run/cuda/full_chain_algorithm.cpp


Host <-> Device Agreement(?)

● Our main “development applications” 
are ones executing the algorithms one 
by one, checking their outputs at 
every step

○ Allowing us to measure the “physics 
performance” of the code, and to compare 
results between different implementations 
of the same algorithm

● At FP32/single precision, agreement 
between the host and GPU is not 
perfect. But it’s also not terrible.

○ While at FP64/double precision the GPU 
code finds the exact same tracks, with the 
exact same properties. 10

FP32

FP64

https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format


11

ODD Reconstruction Compute Performance

FP32

● We also have tests that load N events into (host) memory, and process them over- and over 
again to test the throughput of our algorithms

○ Just copying stuff back to the host at the end, but not analyzing the output of the reconstruction

● Even with the so far hardly optimized algorithms, we can beat a single “decent” CPU with a 
single “workstation” GPU at HL-LHC luminosities



12

ODD Reconstruction Compute Performance

FP32

● We also have tests that load N events into (host) memory, and process them over- and over 
again to test the throughput of our algorithms

○ Just copying stuff back to the host at the end, but not analyzing the output of the reconstruction

● Even with the so far hardly optimized algorithms, we can beat a single “decent” CPU with a 
single “workstation” GPU at HL-LHC luminosities

Missing points ==
not enough memory ☹



ODD Reconstruction Physics Performance

● Makes it very clear that all compute 
performance numbers are to be taken 
with some salt

○ These efficiencies (for high-pT muons) 
should be ~100%. We will make sure that 
they would be.

● With this in mind, such efficiencies 
without any ODD specific settings for 
our code, are not a terrible starting 
point 🤔

13



The Bugs / Next Steps

● With the full chain only starting to work a few weeks ago, and only running on larger 
simulation samples now (this week) for the first time, we are finding a lot of errors still…

○ I’m not too worried about this though

● We will need to demonstrate that the algorithms can find tracks in the ODD efficiently
○ Already identified a few places where our default algorithm configurations don’t seem to work well
○ Making proper use of material maps during reconstruction will also help

● Will need to make the code work with ATLAS’s HL-LHC inner detector geometry (ITk)
○ With the infrastructure developed with the ODD geometry, this should be a finite amount of effort

● We will switch to a fully-SoA Event Data Model from the current, naive AoS one
● Implement the missing algorithms with CUDA, SYCL, Alpaka, etc.
● Integrate everything into Acts!

○ With a unified UI with all the existing / CPU tools

14

https://doi.org/10.1016/j.nima.2022.167597
https://en.wikipedia.org/wiki/AoS_and_SoA#Structure_of_arrays
https://en.wikipedia.org/wiki/AoS_and_SoA#Array_of_structures
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/sycl/
https://alpaka.readthedocs.io


Summary

● I believe the future is bright for Act’s GPU capabilities!
○ The very first version of the code that works on the ODD (v0.10.0), has a lot to improve still
○ However the performance, as is, makes me very hopeful already!

● Much of the current code is held together by sellotape, spit and blind luck…
○ But we have a plan for making it all a lot more robust, and (hopefully) significantly faster

● A lot of work already done, and a lot of good work still ahead of us! 😉

15

https://github.com/acts-project/traccc/releases/tag/v0.10.0


Backup

16



17

ODD Reconstruction Compute Performance

Device
ttbar event processing rate [events / sec]

μ = 20 μ = 40 μ = 60 μ = 80 μ = 100 μ = 140 μ = 200 μ = 300

AMD EPYC 7413 (48 CPU threads) 163.71 91.8513 60.359 37.8601 25.8034 13.8167 6.03643 2.35974

NVIDIA RTX A5000 (2 CPU threads) 42.0662 33.9328 30.1514 26.1469 22.6047 18.5172 12.7826 7.21733

NVIDIA RTX A4000 (2 CPU threads) 42.8472 33.4305 28.555 24.2146 21.5356 15.314 10.4362

NVIDIA RTX3080 (2 CPU threads) 38.9144 31.7598 27.9324 24.0226 21.7591 16.9548

NVIDIA RTX2060 (2 CPU threads) 36.941 26.9102 21.679 16.6888 13.4879



18

Throughput Measurement Profile

Clusterization, measurement 
creation, seeding, etc.

Track finding Track fitting



http://home.cern 

19

http://home.cern

