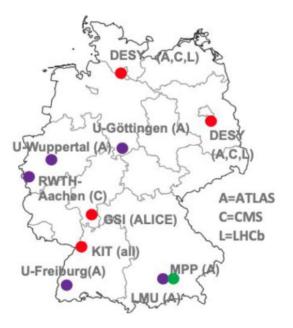


Transformation of the university-based WLCG-Tier-2 structure in Germany: technical aspects and status of the implementation

Sebastian Wozniewski on behalf of the German ATLAS&CMS Joint Computing Project

WLCG/HSF Workshop, Hamburg – 13.05.24

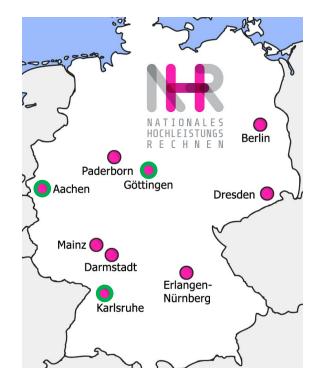
ATLAS & CMS Computing in Germany


- Major accumulation of storage & compute resources at Helmholtz Centres (WLCG Tier-1 GridKa at KIT and Tier-2s at DESY)
- Additional contributions to ATLAS & CMS computing via university-based Tier-2 centres
 - run by local research institutes affiliated with the respective LHC collaboration and supported by the universities
 - operating cost: states; hardware cost + add. personell:
 project consortium of the federal government

SPONSORED BY THE

Funding recently approved for the coming three years

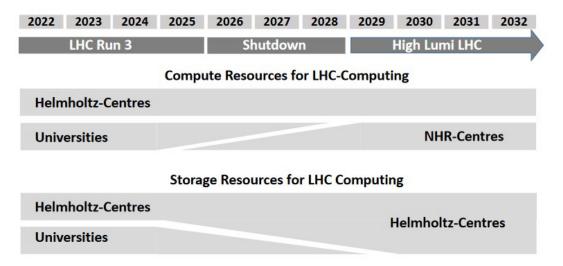
Helmholtz Centres Max-Planck-Institute Universities


National High Performance Computing (NHR)

- association of large, university-based, multi-disciplinary HPC
 centres (independent from supranational Supercomputing Centres in Jürich, Stuttgart, Munich)
- founded in 2020
- funded by the federal government and most of the federal states (~60 Mio. Euro / year)
- provides compute time to university research groups passing the review of a scientific committee (applications every year)
- → Our perspective for a sufficient and sustainable provision of compute power towards HL-LHC instead of university-based Tier-2 centres (energy & resource usage efficiency, synergy)

National High Performance Computing (NHR)

- association of large, university-based, multi-disciplinary HPC
 centres (independent from supranational Supercomputing Centres in Jürich, Stuttgart, Munich)
- founded in 2020
- funded by the federal government and most of the federal states (~60 Mio. Euro / year)
- provides compute time to university research groups passing the review of a scientific committee (applications every year)
- → Our perspective for a sufficient and sustainable provision of compute power towards HL-LHC instead of university-based Tier-2 centres (energy & resource usage efficiency, synergy)
- 3 NHR centres on a campus with WLCG Tier-1 or Tier-2 centre → local expertise + simplifies transition



Transformation towards HL-LHC

Gradual transition from university-based Tier-2 centres to NHR (CPU) and Helmholtz-Centres (mass storage) towards beginning of HL-LHC, i.e. 20% per year.

Local ATLAS/CMS groups keep supervising the NHR resources and apply for funding from federal government for **dedicated personnel**:

- ATLAS:
 - NHR@KIT Freiburg group
 - NHR@Göttingen Göttingen group
- CMS:
 - NHR@KIT Karlsruhe group
 - NHR@Aachen Aachen group

Strategy paper by KET from 2022: https://www.ketweb.de/sites/site_ketweb/content/e199639/e312771/KE T-Computing-Strategie-HL-LHC-final.pdf

HPC clusters in the WLCG

- Various cases of HPC usage over the past years, e.g. Perlmutter (Berkeley), SuperMUC (Garching), FORHLR2 (Karlsruhe), Piz Daint/Alps (Lugano), Vega (Maribor), Karolina (Ostrava)...
- Often restricted to certain workflows / job types due to boundary conditions not meeting all WLCG needs, but still
 valuable contributions of compute power,

e.g. highly-parallelisable simulation jobs can be used to fill an entire node if required (whole-node scheduling) and are less I/O-intense requiring no high-bandwidth data storage access.

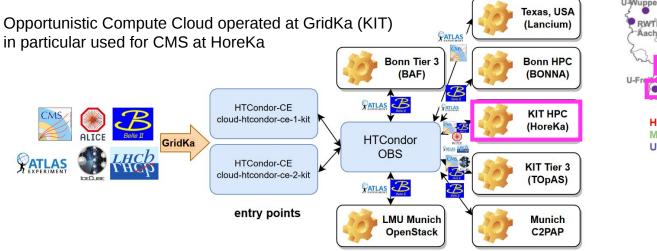
• For a regular usage of NHR resources we need to avoid such restrictions. All job types should run efficiently!

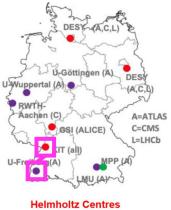
SPONSORED BY THE

Dedicated project funded by the federal government for development and testing of technologies for a federated computing infrastructure (including the transformation, but not exclusively).

- Tools for the integration of heterogenous resources, e.g. HPC centres:
 - Resource management: COBalD/TARDIS
 - Accounting: AUDITOR (talk by Michael Böhler tomorrow WLCG-Session 17:00)
 - ...
- Tools for distributed data storage:
 - Caching
 - Monitoring
 - Improved authorization mechanisms
 - ...
- Testing and optimization under realistic conditions

Virtual Worker Nodes (Drones)


Basic concept being implemented for all three NHR centres (twice for NHR@KIT)


Provides necessary flexibility on HPC nodes for:

- Job slot design: Overlay batch system takes care of partitioning host nodes (dealing with whole-node scheduling)
- cvmfs: no cvmfs-installation on host required with cvmfs-exec + less dependence on HPC site admins
- Software
- Network configuration

Minimal dependence on HPC administration. However, some dependencies remain, e.g. enabled user namespaces, network, downtimes - therefore two (or more in the future) NHR centres going to serve ATLAS / CMS respectively.

Integration at the WLCG/NHR-Sites NHR@KIT "HoreKa"

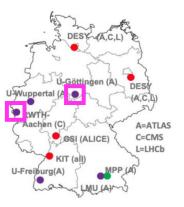
Helmholtz Centres Max-Planck-Institute Universities

- KIT CMS group developed COBalD/TARDIS and has included various heterogenous resources in an Opportunistic Compute Cloud for many years, including the NHR@KIT HPC cluster HoreKa. (Note: Future usage of HoreKa not (just) opportunistic)
- Freiburg ATLAS group recently prepared an independent drone-based setup to integrate HoreKa resources transparantly into the Freiburg Tier-2 batch system for ATLAS workflows (i.e. job submission via Freiburg ARC-CEs and batch system).
- Bandwidth for data access minor problem due to Tier-1 and future additional storage in same building.

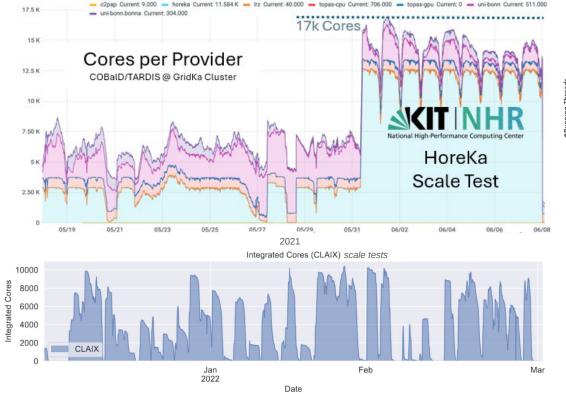
Integration at the WLCG/NHR-Sites NHR@Aachen "CLAIX", NHR@Göttingen "Emmy"

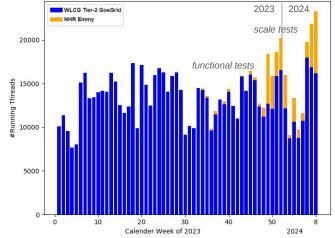
Similar drone-based approaches implemented in Aachen CMS and Göttingen ATLAS:

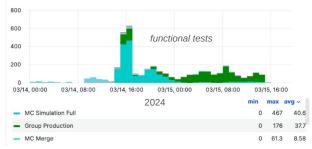
- in Göttingen with cvmfs-exec, in Aachen cvmfs on bare metal nodes
- transparently expanding the existing Tier-2 batch systems (as OBS), reusing CEs and squid proxies
- Aachen already equipped with 100Gbit/s shared WAN access and direct outbound connections allowed; in Göttingen, fast and direct access to local Tier-2 mass storage has been established, remaining outbound traffic via proxy servers


Future data access to KIT and DESY envisaged:

- pushing for high-bandwidth WAN
- · caching mechansims to be implemented as much as needed






Helmholtz Centres Max-Planck-Institute Universities

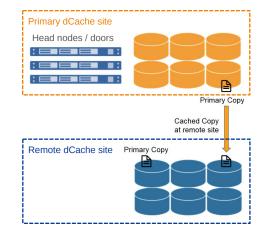
Testing and Consolidation

Slots of Running jobs ③ HoreKa via Freiburg Tier-2

WLCG/HSF Workshop 2024 - Sebastian Wozniewski for the German ATLAS&CMS Joint Computing Project

Federated data access

Tier-2 mass storage to be hosted at Helmholtz Centres KIT and DESY - no permanent storage at NHR, just smaller caches to be applied for if needed.


However, remaining storage at univ.-based Tier-2 centres facilitates transition phase until 2029!

Caching solutions being developed and tested, e.g.

- XRootD buffer prototype installed at HoreKa
- ATLAS Pre-Caching to be tested on smaller storage instance in Göttingen
- more activities in Freiburg, Munich, Wuppertal

Federated dCache solutions being developed at DESY

- Allows for decentralized data pools, i.e. primary dCache site with data pools (e.g. for caching) at other sites
- If using dCache for data caches, this would avoid running core dCache services at the NHR sites
- Various degrees of 'independence' of the dCache satellite site possible, e.g. shared/separate namespaces

Summary and Outlook

- Upcoming transition from German university-based Tier-2 centres to NHR centres (for CPU) and Helmhotz-Centres (for mass storage) in order to profit from their resource efficiency and synergies
- Basic setups for integration of NHR compute resources are in place at all three envisaged NHR sites
- Regular jobs from ATLAS/CMS can be run and scaling tests have reached size of a Tier-2 respectively
- Optimization and long-term testing advanced but ongoing
- Data access currently supported by local WLCG centres
 - → WAN bandwidth improvements and caching solutions to be pursued where necessary
- Current tests and job processing at NHR sites in scope of a one-year 'pilot-phase' (following previous R&D projects)
- Starting in 2025, extension and replacement of university-based Tier-2 CPU resources to be covered by applications for CPU time at NHR centres
- Transition phase foreseen for the next 5 years till beginning of HL-LHC
- NHR sites are hosting GPUs, which could be included in project applications if requested by ATLAS/CMS