
Flexible memory usage for
ATLAS

- Rod Walker , LMU

1

Motivation

● ATLAS have high memory workloads
○ some irreducible e.g.Sherpa evgen, HI, AOD

merge, …
■ Reasons: HepMC3, AF3(fastsim), #volumes.

○ millions of histograms for user systematics, ML
● Grid hardware does not change quickly

○ not asking to buy more RAM per core
○ need to make better use of what we have.

● MCORE simulation uses very little RSS
○ 300MB/core on 8 cores, 170MB/core on 16
○ many other workloads <1GB/core
○ all currently reserve 2GB/core

● Goals
○ more cores for high RSS workloads
○ at more sites for colocation with data

■ reduce need to transfer input data

Base RSSRSS/core

2

Currently requested
2GB/core

How to run himem at more sites

● Run mix of high and low memory jobs
○ keeping mean requested memory/core below the physical value

● Submit pilot with requirements that CE passes to BS
○ Batch Systems can pack nodes according to requirements
○ mix hi and lomem jobs on a node to keep all cores full

● Pull model has streams of pilots with the same requirements
○ currently 2 memory ranges(per core): 0-2GB, 2GB-maxrss
○ dev ongoing to increase granularity and include very lomem, e.g. 0-1,1-2,2-4,4-6

● Push pilot submitted with specific requirements of pre-loaded job
○ MB granularity on memory, works today and in use

● Good news: nothing for sites to do
○ CEs and BSs support this already

3

Maintaining job mix

● Staying below 2GB/core on site avoids admin grief and accounting issue
○ 2GB is site dependent, often higher.

● Have crude limit to stop himem jobs
○ resource_type_limits.HIMEM - limit # running cores

● better mechanism to stay below site meanrss/core (in dev)
○ running job sum(job.ramcount)/sum(job.corecount) > site.meanrss GB/core

■ stop dispatch of jobs with ramcount>site.meanrss
○ overshoot and oscillation may need tweaks

● What if we want to fill resources with himem?
○ leaves cores idle so needs to be accounted for
○ propose to dodge this, for now, by maintaining job mix (or see backup slide)

4

https://atlas-cric.cern.ch/atlas/cresourceparam/list/?name=resource_type_limits.HIMEM

5

All sites

DESY-HH

16 core standard slots

● CPU cores per node more than doubled since 8 was chosen
○ Multicore TF summary in CHEP 2015.

● Easy win on scalability of job & output file handling
○ implies doubling the size of jobs, e.g. #events
○ ~halves RSS/core for MT sim(300->170MB/core)

● Multi-threaded and multi-process payloads have good efficiency @ 16cores
○ serial phases << parallel phase, no worse than 2*8 core jobs

● Standard largest slot size allows sharing between VOs without losing slot
○ SCORE still needed

■ fills ‘awkward’ #cores, not divisible by 16
■ draining 16 cores vs 8 : better than 2015, worse than now

● Reduced BS types to HTCondor & Slurm
○ experience in draining and keeping slots. Tunable loss depending on rate to acquire slots.
○ have walltime limit set, some short jobs for backfill

6

2015 Broadwell 16 cores

2023 EPYC 64, Sapphire Rapid 56

https://indico.cern.ch/event/304944/contributions/1672282/attachments/578522/796661/20150414-chep_mcore.pdf

HT/SMT aside

● Cores left idle by memory scheduling
or draining slots not really that bad

● Using 80 from 96 or 184/224 cores
○ gets the full node HS23

● That accounting is wrong is not a
reason to obsess about idle cores

○ fix accounting, or live with it
● Some sites have HT-off or partial

○ rely on backfill. Revisit decision?
○ option to stay at 8 (higher HS23/core)

7HS23 plots courtesy of Thomas Hartmann(DESY)

Whole node scheduling

● Required on most HPC resources
○ currently only running G4 simulation as not all MP/MT workloads scale perfectly
○ depending on future resource mix may need solution to pack node with smaller jobs to run all

workloads
● Where serial batch system flexibility exposed via CE

○ no clear benefit or need for whole nodes
● Potential use-cases needing to freely schedule node resources

○ ML using all cores and shared memory
○ multiple processes offloading to GPU

● pledged resources continue with S/MCORE jobs
○ testing whole node on limited number of shared sites that support it for other VOs

■ to help with opportunistic use between VOs
■ we can run G4 Sim, or deploy/test overlayBS, e.g. Cobald-Tardis

● need user-level cgroups v2 to avoid chaos of job interference

8

Ideal backfill without ideal job mix

● Endless mix including short SCORE could keep full during draining
● Single job that can efficiently use the whole node

○ use all cores with nice’d (or zero cgroup share) background job
○ or just the free ones: I’d like at least 3 cpus, up to max of 8 if available

9

requirements = Cpus >= 3 &&
(PartitionableSlot || Cpus <= 8)
request_cpus = Cpus > 8 ? 8 : Cpus
request_memory = Cpus * 2000
rank = Cpus

Exit when
no fg job

left and bg
job ends

maxWall

https://research.cs.wisc.edu/htcondor/wiki-archive/pages/HowToUseAllCpus/

Conclusions

● Allow jobs to request memory over physical amount per core
○ pledged hardware request continues to be 2GB/core
○ trust and verify reasonable mix maintained, so no cores idle and no accounting problem

● Move to 16 core as standard on shared sites where a VO requests it
○ Sites can choose to stay with 8. Only important that VOs use the same per site.

● Whole node scheduling
○ pledged resources continue with S/MCORE jobs

■ no problem with CMS/ALICE pledges being wholenode, but ideally have MCORE too
○ keep opportunistic usage possible when VO idle, in both directions

■ needs expert Batch System config + backfill jobs with walltime limit
○ ATLAS wholenode: only G4 sim. Devel for potential future resource mix (HPC, Cloud)
○ foresee a limited number of volunteer sites

10

Back up

11

Accounting

● What if we have high priority tasks and willing to leave cores idle
○ easy: don`t maintain job mix
○ unhappy site admins would need accounting solace.

● Current accounting is core HS23 * walltime seconds
○ site wants full HS23 accounted when cores full OR RSS full, i.e. a missing dimension
○ reserve 2 cores for 4GB serial job? Works but don`t, because we only use 1 core

■ someone else(maybe same VO) can use that core
● Minimal change is not to add dimension but define an effective HS23s
● sum(job.ramcount)/sum(job.corecount) /site.meanrss, over running jobs

○ <= 1: account all jobs with full HS23/core as usual
○ >1 means cores *could* be idle.

■ effective HS23 scaled by requested RSS per core / site mean RSS
○ Jobs effectively using more than 1 core, but some using less than 1 - not an integer

12

