A Large Ion Collider Experiment

Multi-core resources management in ALICE

L. Betev, M. Litmaath

May 15, 2024 session

WLCG Workshop @DESY, Operations

Single core - multi core

- ALICE upgraded the detector and software for Run3/4
 - Full rewrite of the online and offline software multi core + GPUs
 - Full rewrite of the top-level Grid software stack from AliEn to JAliEn
- Main challenges from Grid perspective
 - Assure smooth transition from single to multi core payloads, while keeping full support for legacy software
 - Make the transition as simple as possible for both the ALICE users and Grid sites - keep the interfaces to the Grid and on the sites unchanged

Update of the Job Agent model

- Simple life pre-Run3
 - One JA, one job on a single core, one user per JA
- Now
 - Anything from single to 8 core jobs in the queue for standard workflows + higher number of cores for GPU-enabled workflows (CTF reconstruction)
 - Multiple users could be combined in the same batch slot
 - The above must work in a standard multicore queue (8-cores) on the Grid
 - The mixed-cores-job functionality should be achieved on central task queue and JA level

Very simplified JA functionality - core matching

 Not in the picture - matching on priorities, expected run time, memory requirements, data location, software versions

Additional considerations

- Different job requirements every job is running in its own container
 - EL7, EL8, EL9 + custom containers with GPU enabled
- Non-uniformity of site resources, especially memory
 - Memory and CPU control of the payload - use of cgroups v2, taskset in production (and wherever available)

Why 8-core is not the best solution

- 8-core queue is ideal *only* for 8-core jobs
 - For any other job mix there is not much real estate to play with
 - 24 hour max proxy could leave unused cores and reduce the overall efficiency
 - Not all jobs can use efficiently 8 cores, even if they are nominally 8-core
- The 8-core JA functionality is trivially extensible to any higher number of cores
- ... to a whole node submission
 - Especially relevant for HPCs, where 'whole node' allocation is typical
 - Allows for more intricate and precise allocation of resources, for example
 - Mix of high I/O with high CPU consumption jobs (better balance)
 - Mix of high memory with lower memory requirement jobs (still fitting the overall envelope)
 - Full control of the CPU pinning use of same NUMA domain*
 - Possibility to oversubscribe, in case of idle cores **
 - Makes the sysadmins jobs easy no more queue management

* this pinning technique improves efficiency by ~5% ** oversubscription can provide up to ~15% additional resources

Experience with multi-core and whole node

- On HPCs and ALICE only sites
 - We have asked the site to configure the batch system as whole node
- The JA detects the number cores and submits as many jobs as it could fit
 - Plus uses the other refinements described in the previous slide
- Still, the majority of resources are on 8-core queues

Service	Stat	Cores 🔺
54. Perlmutter		256
23. EPN_MI100		96
22. EPN		64
78. UPB		16

Service	Stat	Cores	•
26. FZK_KIT			0
33. HPCS_Lr			0
39. KISTI_GSDC			0
43. LBL_AFP			0
44. LBL_HPCS			0
48. NIHAM			0
51. ORNL			0
53. Pandora			0

What is missing for wider adoption of whole node or larger than 8-core queues

- Compatibility of OS on the host
 - cgroups v2 are only available and fully configurable on EL9
- Compatibility of batch system
 - Only HTCondor (versions >23) and Slurm (we developed a plug-in) support rootless encapsulation in *cgroups v2*
 - Considerable inertia of the Grid resources not only OS updates, but configuration updates must be done at all sites
- Biggest issue how to make all this work on shared sites where the job slots must be freed after a reasonable time
 - Whole node or >8 core queues will work better with >24 hour proxy (slot booked for several days)

ALICE

Conclusions

- 8-core queues are nice, but have limitations with mixed workflow
- 16-core queues would make sense if the slot can be used for >>longer than 24-hour period
- The variability of workflows and resources require flexible allocation and workload management
 - Cores, memory, runtime, software packages, I/O...
 - More HPCs than ever in production
- The tools to manage arbitrary number of cores are ~there and can be incorporated in the VO Grid software
 - Payload isolation, CPU pinning, self-imposed memory limits, use of accelerators
- It would make sense to re-examine the relatively rigid (and old) resource fragmentation model and to move to a more open system
 - For example offer whole-node queues at large sites
 - Allow for long-lived (>>24h) proxy on whole node or even on 8-/16-core queues