
FTS Perspective

Presenter: Steven Murray

Authors: Joao Pedro Lopes, Shubhangi Misra, Steven Murray, Mihai Patrascoiu and Luca Mascetti

Tuesday 14th May 2024

WLCG/HSF Workshop 2024 at DESY Hamburg, May 13-17 2024

2

General overview and impressions

• The data challenge was a success for FTS

 The sum of all FTS instances: ATLAS, CMS, LHCb and Pilot
 33 million file-transfers and 249 PB over a two week period

 Best transfer concurrency provided by a single instance:
 FTS ATLAS broke the previous record (also held by FTS ATLAS)
 20K concurrent transfers for 17 hours (previous record peak was 9K)

 Half of the FTS transfers used token authentication

• There were challenges
 Too much fire fighting behind the scenes with respect to fts3-atlas.cern.ch

 Many thanks to the database-on-demand team for quickly increasing the DB RAM
 Defragmentation of the fts3-atlas.cern.ch DB was not completed

 FTS maximises concurrent-transfers per link whereas data challenges maximise data throughput

3

Previous concurrency record vs DC24

4

FTS ATLAS - 20K concurrent transfers for 17 hours

5

Concurrent transfers of FTS CMS and LHCb

6

Tokens vs X509 certificates
fts3-
atlas.cern.ch

fts3-
cms.cern.ch

fts3-
lhcb.cern.ch

fts3-
pilot.cern.ch ATLAS Tier-2 traffic

moved from FTS
ATLAS to FTS Pilot

7

Please note
 Only showing “Data Challenge” activity
 FTS was also running production transfers
 Both successful and failed transfers are shown

33 million transfers – 249 PB

8

FTS ATLAS database was overloaded

 It was believed queuing more transfers would increase data throughput

 DB slowed and practically stopped during weekly defrag (every Monday at 10:00am)

 FTS token-refreshing was the main cause of the overload

 FTS continually polled DB for near-to-expire tokens

 SQL queries had not been optimised

 Urgent fix required because FTS ATLAS also handled non-DC24 transfers

 Database-on-demand team quickly increased DB RAM from 80 to 120 GB

 FTS team migrated a lower-priority FTS instance out of a high-performance DB server

 FTS team migrated FTS Pilot into the newly vacated DB server

 ATLAS split DC24 load across FTS ATLAS and Pilot

9

FTS ATLAS database was overloaded

 FTS ATLAS DB blocked at 13:00 on Monday 19th February

 Outage was ~2.5 hours

 Bad interaction between high DB activity and regular defragmentation operation started at 10:00am

 Defragmentation reduces time to warm RAM cache after DB-server restart

10

Slow FTS ATLAS optimizer

 FTS optimizer increases or decreases the amount of transfers on a link based on
the link’s current performance

 Usually takes 6 to 12 minutes for the optimizer to run

 3 hour optimizer runs were observed during DC24

 Slow down was a linear function of file-transfer queue-length

 Hourly restart of daemons meant a full optimizer run could not complete

 Slowdown and restarts “froze” the majority of concurrency decisions

 Data manager changes were effectively ignored

11

Optimizing concurrency vs throughput
• Main reason for not sustaining DC24 target for 48 hours

 FTS tries to maximize concurrency within its configured boundaries

 Data challenges try to maximize data throughput

• FTS is configured to enforce limits on links and storage endpoints

• If a link or storage endpoint is not configured then the default is used

12

Optimizing concurrency vs throughput

• FTS CANNOT reach maximum throughput for the following configuration:

Destination

T1 source A

T1 source B

T0 source

All concurrent transfers are treated
equally even though those out of
T0 may have been faster

In-bound limit = X concurrent transfers

• Operational experience shows storage endpoint limits are the system brakes

13

Lessons learned about tokens
• Incorrectly used tokens are NOT secure:

 Tokens were and WILL be leaked (not by FTS)

 FTS filter added just before DC24

• Too much time spent “discovering” tokens

 No agreed FTS configuration within multiple IAM instances

 Single-use refresh-tokens discovered on the fly - Fixed by IAM configuration change

 10 hour tokens were refreshed into 1 hour tokens - Fixed by IAM configuration change

• FTS had to deal with “hard” token tests on the fly:

 Replaced token-refreshing cron-jobs with daemons to prevent overlap when IAM was slow

 Separated “heavy” housekeeping tasks for tokens from their refresh logic to reduce DB load

• FTS did not know its limits:

 DC24 helped understand them but FTS has no concept of back pressure

• FTS is now fully responsible for refreshing credentials which is not the case for X509

14

Work done after DC24

• Continued to provide support for tokens on the following instances:

 FTS ATLAS

 FTS CMS

 FTS LHCb

 FTS Pilot

• Continued to work with modify-tokens with “relaxed” but “risky” modify-tokens

 Arguably wide scopes with long durations

• Increased the parallelism of the token-refresher daemon

• Optimised the SQL used by the token-refresher and token-housekeeper daemons

15

Work done after DC24: Optimized token-refresher

• Token-enabled DB schema uses index to implement efficient “work” queue for token-refresher daemon

• FTS REST interface calculates and INSERTs access_token_refresh_after for each token

• FTS token-refresher daemon efficiently reads “work” queue using database index

access_token_refresh_after = token_dict["nbf"] + lifetime_sec * 0.5

INSERT INTO t_token
 ...
 access_token_refresh_after,
 ...

CREATE TABLE `t_token` (
 ...
 `access_token_refresh_after` timestamp NOT NULL,
 ...
 `retired` tinyint(1) NOT NULL DEFAULT 0,
 ...
 KEY `idx_retired_access_token_refresh_after`
(`retired`,`access_token_refresh_after`),
 ...

SELECT
 ...
FROM
 t_token
WHERE
 retired = 0
AND
 access_token_refresh_after >= NOW()
ORDER BY
 retired ASC,
 access_token_refresh_after ASC

16

Work done after DC24: Visualize storage saturation

17

Future work and investigations

• Add a back-pressure mechanism

 RUCIO have kindly offered to switch on their FTS back-pressure

• Improve the performance of the optimiser

 Allow the optimiser to be switched off

 Parallelize the optimiser algorithm

• Provide a better way to show the saturation of destination storage-endpoints

• Provide token support for the Tape REST API

• Introduce a new FTS scheduler

 Reduce amount of required DB RAM

 Add priorities between links

18

Food for thought
• We need a single contact person for tokens

• Can single-shot refresh-tokens be banned from the WLCG token lifecycle?

• Can dynamic IAM-client registration be banned to reduce the attack surface?

• Should FTS automatically refresh access-tokens?

 Why can’t fresh tokens be pushed into FTS like X509 proxy certificates are today?

• Can we agree on how to put the VO in tokens?

 FTS had to invent a way to map tokens to VOs

 VO values must be the same for tokens and certificates

• We learnt from ATLAS that not all tokens are equal – what optimisations can be made?

 Read and create tokens can have wide scopes and long durations

 Modify tokens should have narrow scopes and preferably short durations

• We learnt from CMS that they use the same file paths on all storage endpoints:

 Can we ban the https://wlcg.cern.ch/jwt/v1/any wildcard audience from modify-tokens?

• Can all storages ensure they have integrated themselves with the dteam token provider?

	FTS Perspective
	General overview and impressions
	Previous concurrency record vs DC24
	FTS ATLAS - 20K concurrent transfers for 17 hours
	Concurrent transfers of FTS CMS and LHCb
	Tokens vs X509 certificates
	Slide 7
	FTS ATLAS database was overloaded
	FTS ATLAS database was overloaded (2)
	Slow FTS ATLAS optimizer
	Optimizing concurrency vs throughput
	Optimizing concurrency vs throughput (2)
	Lessons learned about tokens
	Work done after DC24
	Work done after DC24: Optimized token-refresher
	Work done after DC24: Visualize storage saturation
	Future work and investigations
	Food for thought

