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General overview and impressions

• The data challenge was a success for FTS

 The sum of all FTS instances: ATLAS, CMS, LHCb and Pilot
 33 million file-transfers and 249 PB over a two week period

 Best transfer concurrency provided by a single instance:
 FTS ATLAS broke the previous record (also held by FTS ATLAS)
 20K concurrent transfers for 17 hours (previous record peak was 9K)

 Half of the FTS transfers used token authentication

• There were challenges
 Too much fire fighting behind the scenes with respect to fts3-atlas.cern.ch

 Many thanks to the database-on-demand team for quickly increasing the DB RAM
 Defragmentation of the fts3-atlas.cern.ch DB was not completed

 FTS maximises concurrent-transfers per link whereas data challenges maximise data throughput
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Previous concurrency record vs DC24
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FTS ATLAS - 20K concurrent transfers for 17 hours 
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Concurrent transfers of FTS CMS and LHCb
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Tokens vs X509 certificates
fts3-
atlas.cern.ch

fts3-
cms.cern.ch

fts3-
lhcb.cern.ch

fts3-
pilot.cern.ch ATLAS Tier-2 traffic 

moved from FTS 
ATLAS to FTS Pilot
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Please note
 Only showing “Data Challenge” activity
 FTS was also running production transfers
 Both successful and failed transfers are shown

33 million transfers – 249 PB
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FTS ATLAS database was overloaded

 It was believed queuing more transfers would increase data throughput

 DB slowed and practically stopped during weekly defrag (every Monday at 10:00am)

 FTS token-refreshing was the main cause of the overload

 FTS continually polled DB for near-to-expire tokens

 SQL queries had not been optimised 

 Urgent fix required because FTS ATLAS also handled non-DC24 transfers

 Database-on-demand team quickly increased DB RAM from 80 to 120 GB

 FTS team migrated a lower-priority FTS instance out of a high-performance DB server

 FTS team migrated FTS Pilot into the newly vacated DB server

 ATLAS split DC24 load across FTS ATLAS and Pilot
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FTS ATLAS database was overloaded

 FTS ATLAS DB blocked at 13:00 on Monday 19th February

 Outage was ~2.5 hours

 Bad interaction between high DB activity and regular defragmentation operation started at 10:00am

 Defragmentation reduces time to warm RAM cache after DB-server restart
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Slow FTS ATLAS optimizer

 FTS optimizer increases or decreases the amount of transfers on a link based on 
the link’s current performance

 Usually takes 6 to 12 minutes for the optimizer to run

 3 hour optimizer runs were observed during DC24

 Slow down was a linear function of file-transfer queue-length

 Hourly restart of daemons meant a full optimizer run could not complete

 Slowdown and restarts “froze” the majority of concurrency decisions

 Data manager changes were effectively ignored
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Optimizing concurrency vs throughput
• Main reason for not sustaining DC24 target for 48 hours

 FTS tries to maximize concurrency within its configured boundaries

 Data challenges try to maximize data throughput

• FTS is configured to enforce limits on links and storage endpoints

• If a link or storage endpoint is not configured then the default is used 
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Optimizing concurrency vs throughput

• FTS CANNOT reach maximum throughput for the following configuration:

Destination

T1 source A

T1 source B

T0 source

All concurrent transfers are treated 
equally even though those out of 
T0 may have been faster

In-bound limit = X concurrent transfers

• Operational experience shows storage endpoint limits are the system brakes
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Lessons learned about tokens
• Incorrectly used tokens are NOT secure:

 Tokens were and WILL be leaked (not by FTS)

 FTS filter added just before DC24

• Too much time spent “discovering” tokens

 No agreed FTS configuration within multiple IAM instances

 Single-use refresh-tokens discovered on the fly - Fixed by IAM configuration change

 10 hour tokens were refreshed into 1 hour tokens - Fixed by IAM configuration change

• FTS had to deal with “hard” token tests on the fly:

 Replaced token-refreshing cron-jobs with daemons to prevent overlap when IAM was slow

 Separated “heavy” housekeeping tasks for tokens from their refresh logic to reduce DB load

• FTS did not know its limits:

 DC24 helped understand them but FTS has no concept of back pressure

• FTS is now fully responsible for refreshing credentials which is not the case for X509
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Work done after DC24

• Continued to provide support for tokens on the following instances:

 FTS ATLAS

 FTS CMS

 FTS LHCb

 FTS Pilot

• Continued to work with modify-tokens with “relaxed” but “risky” modify-tokens

 Arguably wide scopes with long durations

• Increased the parallelism of the token-refresher daemon

• Optimised the SQL used by the token-refresher and token-housekeeper daemons  
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Work done after DC24: Optimized token-refresher

• Token-enabled DB schema uses index to implement efficient “work” queue for token-refresher daemon

• FTS REST interface calculates and INSERTs access_token_refresh_after for each token

• FTS token-refresher daemon efficiently reads “work” queue using database index

access_token_refresh_after = token_dict["nbf"] + lifetime_sec * 0.5

INSERT INTO t_token
  ...
  access_token_refresh_after,
  ...

CREATE TABLE `t_token` (
  ...
  `access_token_refresh_after` timestamp NOT NULL,
  ...
  `retired` tinyint(1) NOT NULL DEFAULT 0,
  ...
  KEY `idx_retired_access_token_refresh_after` 
(`retired`,`access_token_refresh_after`),
  ...

SELECT
  ...
FROM
  t_token
WHERE
  retired = 0
AND
  access_token_refresh_after >= NOW()
ORDER BY
  retired ASC,
  access_token_refresh_after ASC
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Work done after DC24: Visualize storage saturation
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Future work and investigations

• Add a back-pressure mechanism

 RUCIO have kindly offered to switch on their FTS back-pressure 

• Improve the performance of the optimiser

 Allow the optimiser to be switched off

 Parallelize the optimiser algorithm

• Provide a better way to show the saturation of destination storage-endpoints

• Provide token support for the Tape REST API

• Introduce a new FTS scheduler

 Reduce amount of required DB RAM

 Add priorities between links 
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Food for thought
• We need a single contact person for tokens

• Can single-shot refresh-tokens be banned from the WLCG token lifecycle?

• Can dynamic IAM-client registration be banned to reduce the attack surface?

• Should FTS automatically refresh access-tokens?

 Why can’t fresh tokens be pushed into FTS like X509 proxy certificates are today?

• Can we agree on how to put the VO in tokens?

 FTS had to invent a way to map tokens to VOs

 VO values must be the same for tokens and certificates

• We learnt from ATLAS that not all tokens are equal – what optimisations can be made?

 Read and create tokens can have wide scopes and long durations

 Modify tokens should have narrow scopes and preferably short durations

• We learnt from CMS that they use the same file paths on all storage endpoints:

 Can we ban the https://wlcg.cern.ch/jwt/v1/any wildcard audience from modify-tokens?

• Can all storages ensure they have integrated themselves with the dteam token provider?
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