
Prof. Dr. Malte Göttsche

Nuclear Verification and Disarmament Group

Physics Institute III B

RWTH Aachen University

goettsche@nvd.rwth-aachen.de

CERN Academic Training, 8 February 2024

Science for Nuclear Arms Control

Lecture III: Verification



2

Safeguards
Verifying declared nuclear materials

Nuclear material accountancy

• On-site inspections in nuclear facilities

• Remote monitoring
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Example remote monitoring at declared 

facilities: Online Enrichment Monitor
Measurement at (header) pipes

• NaI scintillation detector measures U-235 186 keV gamma 

peak of gas flowing past the device

• Pressure and temperature measurements to deduce 

density of gas

→ Obtain real-time enrichment
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Undeclared nuclear facilities

• On-site inspections (short notice, high threshold)

– Swiping (e.g. undeclared presence of fissile material)

• “up-stream” verification to detect diversion

• Wide-area environmental sampling

– U for enrichment, Kr-85 for reprocessing

• Open source information (signal-to-noise ratio)

– Satellite imagery

– News and other media

– Research publications
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Wide-area environmental sampling

Kr-85 (fission 
product,
noble gas) is
released in 
reprocessing
plant

→ Detection
indicates repro-

cessing

But: High
background
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Nuclear disarmament verification

Delivery systems Warheads Fissile materials
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My verification research

Computational nuclear archaeology Antineutrino detection

Gamma & neutron detection
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Nuclear disarmament verification

Delivery systems Warheads Fissile materials
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Black Sea Experiment 1989

US independent scientists at Soviet ship

Warhead confirmation

Balyaev et al., Science & Global Security 17, 2009
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Verified warhead dismantlement

Verified dismantlementWarheads Fissile material:

Plutonium

Highly enriched uranium
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Verify that an item is a nuclear warhead

(without visual access)

Acquiring a gamma spectrum (weapon-grade 

Pu?) or neutron counts (sufficient Pu mass?) can 

contain too much information

Warhead confirmation
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Information Barriers: Gamma Spectrometry
Interpreting gamma spectra as probability density distributions

Hypothesis testing (Kolmogorov Smirnov Test)

Sodium iodide detector
(Based on MCNP simulations)

Cumulative distribution function
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M. Kütt, M. Göttsche, A. Glaser, Measurement 114:185-190, 2018
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Information Barriers: Neutron counting

How to determine fissile mass?

• Due to strong (self-)absorption of gamma 

rays in high-Z materials, gammas that 

escape come from close to the surface
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M. Göttsche, J. Schirm, A. Glaser, Nuclear Instruments and Methods A 840:139-144, 2016

Information Barriers: Indirect neutron detection

(𝑛, 𝛾) in hydrogen

Neutron counts for simulated 
30 s measurement 
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Information Barriers:

Neutron Multiplicity Counting

Primary neutrons (plutonium)

• Pu-240 spontaneous fission fission rate F = 𝑚240 ∙ 479,1 Τ𝑓𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑔

• (𝛼, 𝑛) reactions in oxide 𝛼 = Τ𝑛𝛼 𝑛𝑠𝑝𝑜𝑛𝑡.𝑓𝑖𝑠𝑠𝑖𝑜𝑛

Neutron multiplication

𝑀 = Number of neutrons

leaking the Pu source

in total 

per primary neutron

Pu-239
induced fission
(𝑛, 𝛾)
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„Super fission“ model

Analytical description of primary neutrons and subsequent neutron

multiplications by a single multiplicity distribution

Pu-240 spont. fission

Pu-239 ind. fission 2MeV
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Multiplicity

Assessing Fissile Mass:

Neutron Multiplicity Counting
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Measuring the multiplicity distribution of a „super-fission“

Describing the measured distribution by ist first three moments

𝑆 = 𝑭 1 + 𝜶 𝑴 ∙ 𝜖𝜈𝑠𝑓1

𝐷 = Τ1 2 ∙ 𝑭 ∙ 𝑴𝟐 ∙ 𝜖2𝑓𝑑[𝜈𝑠𝑓2+
𝑴− 1

𝜈𝑖1 − 1
𝜈𝑠𝑓1 1 + 𝜶 𝜈𝑖2]

𝑇 = 1/6 ∙ 𝑭 ∙ 𝑴𝟑 ∙ 𝜖3𝑓𝑡{𝜈𝑠𝑓3 +
𝑴− 1

𝜈𝑖1 − 1
3𝜈𝑠𝑓2𝜈𝑖2 + 𝜈𝑠𝑓1 1 + 𝜶 𝜈𝑖3 + 3

𝑴− 1

𝜈𝑖1 − 1

2

𝜈𝑠𝑓1(1 + 𝜶)𝜈𝑖2
2 }

Solving the system of equations numerically

𝑭 = 𝑚240 ∙ 479,1 Τ𝑓𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑔

t

Gate Gate Gate

Assessing Fissile Mass:

Neutron Multiplicity Counting

M. Göttsche, G. Kirchner, Nucl. Instr. Meth. A 798, 2015

K. Böhnel, Nuclear Science & Engineering 90:75-82, 1985
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My verification research

Computational nuclear archaeology Antineutrino detection
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Nuclear disarmament verification

Delivery systems Warheads Fissile materials
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Verifying Fissile Material Inventories

Verified dismantlementWarheads

12,000 weapons today

> 100,000   weapon-equivalents of 

non-civil fissile materials
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Independent fissile material estimates

–

now
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Uranium

Reactor

Reprocessing

plant
Weapons

Spent fuel:
Uranium

Plutonium

Fission products

& actinides
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Uranium

Spent fuel:
Uranium

Plutonium

Fission products

& actinidesReactor

Reprocessing

plant

Enrichment Plant

Weapons
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Uranium

Spent fuel:
Uranium

Plutonium

Fission products

& actinidesReactor

Reprocessing

plant
Weapons

Enrichment Plant
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M. Schalz, L. Bormann, M. Göttsche, Trans. Am. Nucl. Soc. 126, 2022

K. Huff, Adv. Eng. Softw., 2016

Fuel cycle simulations: CYCLUS

• Physics-based facility agents
(specified parameters)

• Optimized material transfers over time

Combining with statistics: BICYCLUS

• e.g. parameter sampling (quasi-random
Monte Carlo), uncertainty propagation
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A. Figueroa, M. Göttsche, Ann. Nucl. Energy 156, 2021

Creating a fast reactor surrogate model

• Reactor model to predict spent fuel
composition in a split-second

• Machine learning: 
Gaussian Process Regression

• Outperforms currently used regressions

Fuel cycle simulations: CYCLUS

• Physics-based facility agents
(specified parameters)

• Optimized material transfers over time

Combining with statistics: BICYCLUS

• e.g. parameter sampling (quasi-random
Monte Carlo), uncertainty propagation



30

Independent fissile material estimates:

Forward-simulations

• More robust estimates than
previously possible, 
robust uncertainties
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From independent fissile material estimates

to cooperative verification:

Nuclear archaeology
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Combining simulations with

measurements
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South Africa 1993

“Nuclear archaeology” precedent

South Africa:

• Examining documentation from facility operations for consistency 

(thousands of pages)

• Re-simulating operations to independently obtain produced fissile 

materials

• Taking various measurements to clarify inconsistencies (e.g. 

uranium in enrichment tails)
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Uranium

Spent fuel:
Uranium

Plutonium

Fission products

& actinidesReactor

Reprocessing

plant
Weapons

Enrichment Plant

Depleted uranium

storage

Interim storage,

geological repository
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𝑝(𝑥|𝑦) ∝ 𝑝 𝑦 𝑥 ∗ 𝑝(𝑥)

Nuclear archaeology as an inverse 
problem

Bayesian Inference

Posterior Likelihood Prior

A. Figueroa, M. Göttsche, ESARDA Bulletin 59, 2019

Prior information

Test a specific set of
parameters 𝑥

Compare to
measurements 𝑦

𝑝 𝑥

𝐹 𝑥 : forward-simulation (GPR)

𝑝 𝑦 𝑥 ∝ exp −
𝑦 − 𝐹(𝑥)

2𝜎

2

M
a
rk

o
v

C
h

a
in

 M
o

n
te

 C
a
rlo



36

Results

M. Schalz, L. Bormann, M. Göttsche, Ann. Nucl. Energy. 196, 2024

Independent assessment
(forward)

Nuclear archaeology
(inverse)
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• Sampling permanent structures inside
core (e.g. pressure tube)

• Trace elements in zircaloy

• Sensitivity analysis to identify isotopic
ratios that tell about the history

Archaeology with shut-down reactors
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• Sampling permanent structures inside
core (e.g. pressure tube)

• Trace elements in zircaloy

• Sensitivity analysis to identify isotopic
ratios that tell about the history

Archaeology with shut-down reactors
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Isotopic ratio Sensitivity Explanation

O-17/O-18 Active period Neutron capture, stable isotopes

Hf-180/Hf-182 Thermal power 2x capture via short-lived Hf-181

Sr-86/Sr-90 Shut-down time Sr-90 decay, Sr-86 stable
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Fast surrogate model & Bayesian inference
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My verification research

Computational nuclear archaeology Antineutrino detection

Gamma & neutron detection
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Inverse Beta Decay (IBD)

• Kinetic threshold 1.8 MeV

• Additional energy essentially

transferred to positron

• Detection in scintillator via 

delayed coincidence of two

energy depositions

• Background sources mimic signal

ഥ𝜈𝑒

𝑒+

𝒏

𝒑

𝑯

𝜸
2.2 MeV

𝜸
511 keV

𝜸
511 keV
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Monitoring radioactive waste

Q
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M. Wittel, M. Göttsche, ESARDA Bulletin 60, 2020
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Is a radioactive waste site as declared?

3
3
0
 m

Hanford Site

S Tank Farm

Washington State, USA

Google Maps, 2020
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Is a radioactive waste site as declared?

Organic scintillator, 80 m3 detection volume, no background considered
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Time Projection Chamber

Partner: S. Roth (RWTH Aachen University)

Current status: Simulations, build prototype

Organic liquid medium

H density comparable to

typical scintillators

Measure IBD tracks!

J. Dawsen, D. Kryn, JINST 9, 2014
S. Wu, et al., Nucl. Instr. Meth. A 972, 2020
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Time Projection Chamber:

First results

T. Radermacher, J. Bosse, S. Friedrich, M. Göttsche, S. Roth, G. Schwefer, Nucl. Instr. Meth. A 1054, 2023
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Thank you for your attention.


