Science for Nuclear Arms Control

Lecture III: Verification

Prof. Dr. Malte Göttsche Nuclear Verification and Disarmament Group

> Physics Institute III B RWTH Aachen University goettsche@nvd.rwth-aachen.de

CERN Academic Training, 8 February 2024

Safeguards

Verifying declared nuclear materials

Nuclear material accountancy

- On-site inspections in nuclear facilities
- Remote monitoring

Example remote monitoring at declared facilities: Online Enrichment Monitor

Measurement at (header) pipes

- Nal scintillation detector measures U-235 186 keV gamma peak of gas flowing past the device
- Pressure and temperature measurements to deduce density of gas
- \rightarrow Obtain real-time enrichment

Undeclared nuclear facilities

- On-site inspections (short notice, high threshold)
 - Swiping (e.g. undeclared presence of fissile material)
- "up-stream" verification to detect diversion
- Wide-area environmental sampling
 U for enrichment, Kr-85 for reprocessing
- Open source information (signal-to-noise ratio)
 - Satellite imagery
 - News and other media
 - Research publications

Wide-area environmental sampling

Kr-85 (fission product, noble gas) is released in reprocessing plant

→ Detection indicates reprocessing

But: High background

Nuclear disarmament verification

Warheads

Fissile materials

My verification research

Gamma & neutron detection

Computational nuclear archaeology

Antineutrino detection

A. Glaser

Nuclear Verification and Disarmament

My verification research

Computational nuclear archaeology

Antineutrino detection

Nuclear disarmament verification

Fissile materials

Warhead confirmation

Black Sea Experiment 1989 US independent scientists at Soviet ship

Balyaev et al., Science & Global Security 17, 2009

Verified warhead dismantlement

Fissile material: Plutonium Highly enriched uranium

Warhead confirmation

<u>Verify that an item is a nuclear warhead</u> (without visual access)

Acquiring a gamma spectrum (weapon-grade Pu?) or neutron counts (sufficient Pu mass?) can contain too much information

Information Barriers: Gamma Spectrometry

Interpreting gamma spectra as probability density distributions Hypothesis testing (Kolmogorov Smirnov Test)

Sodium iodide detector (Based on MCNP simulations)

Cumulative distribution function

M. Kütt, M. Göttsche, A. Glaser, *Measurement* 114:185-190, 2018

Information Barriers: Neutron counting

How to determine fissile mass?

• Due to strong (self-)absorption of gamma rays in high-Z materials, gammas that escape come from close to the surface

Information Barriers: Indirect neutron detection

M. Göttsche, J. Schirm, A. Glaser, Nuclear Instruments and Methods A 840:139-144, 2016

Information Barriers: Neutron Multiplicity Counting

 $\alpha = n_{\alpha}/n_{spont.fission}$

Primary neutrons (plutonium)

- Pu-240 spontaneous fission
- (*α*, *n*) reactions in oxide

Neutron multiplication

M = Number of neutronsleaking the Pu sourcein totalper primary neutron

fission rate F = $m_{240} \cdot 479,1$ fissions/g

Assessing Fissile Mass: Neutron Multiplicity Counting

"Super fission" model

Analytical description of primary neutrons and subsequent neutron multiplications by <u>a single</u> multiplicity distribution

Assessing Fissile Mass: Neutron Multiplicity Counting

Measuring the multiplicity distribution of a "super-fission"

Describing the measured distribution by ist first three moments

$$S = F(1 + \alpha)M \cdot \epsilon v_{sf1}$$

$$D = 1/2 \cdot F \cdot M^2 \cdot \epsilon^2 f_d [v_{sf2} + \frac{M - 1}{v_{i1} - 1}v_{sf1}(1 + \alpha)v_{i2}]$$

$$T = 1/6 \cdot F \cdot M^3 \cdot \epsilon^3 f_t \{v_{sf3} + \frac{M - 1}{v_{i1} - 1}[3v_{sf2}v_{i2} + v_{sf1}(1 + \alpha)v_{i3}] + 3\left(\frac{M - 1}{v_{i1} - 1}\right)^2 v_{sf1}(1 + \alpha)v_{i2}\}$$

Solving the system of equations numerically $F = m_{240} \cdot 479,1 \ fissions/g$

M. Göttsche, G. Kirchner, *Nucl. Instr. Meth.* A 798, 2015 K. Böhnel, *Nuclear Science & Engineering* 90:75-82, 1985

My verification research

Computational nuclear archaeology

Antineutrino detection

Nuclear disarmament verification

Warheads

Fissile materials

<section-header><section-header>

12,000 weapons today > 100,000 weapon-equivalents of non-civil fissile materials

Independent fissile material estimates

NOW

Fuel cycle simulations: CYCLUS

- Physics-based facility agents (specified parameters)
- Optimized material transfers over time

Combining with statistics: BICYCLUS

• e.g. parameter sampling (quasi-random Monte Carlo), uncertainty propagation

Fuel cycle simulations: CYCLUS

- Physics-based facility agents (specified parameters)
- Optimized material transfers over time

Combining with statistics: BICYCLUS

 e.g. parameter sampling (quasi-random Monte Carlo), uncertainty propagation

Creating a fast reactor surrogate model

- Reactor model to predict spent fuel composition in a split-second
- Machine learning: Gaussian Process Regression
- Outperforms currently used regressions

Independent fissile material estimates: Forward-simulations

 More robust estimates than previously possible, robust uncertainties From independent fissile material estimates to cooperative verification:

Nuclear archaeology

Combining simulations with measurements

"Nuclear archaeology" precedent

South Africa 1993

South Africa:

- Examining <u>documentation</u> from facility operations for consistency (thousands of pages)
- <u>Re-simulating</u> operations to independently obtain produced fissile materials
- Taking various <u>measurements</u> to clarify inconsistencies (e.g. uranium in enrichment tails)

A. Figueroa, M. Göttsche, ESARDA Bulletin 59, 2019

Results

Independent assessment (forward)

Nuclear archaeology (inverse)

M. Schalz, L. Bormann, M. Göttsche, Ann. Nucl. Energy. 196, 2024

Archaeology with shut-down reactors

- Sampling permanent structures inside core (e.g. pressure tube)
- Trace elements in zircaloy
- Sensitivity analysis to identify isotopic ratios that tell about the history

Archaeology with shut-down reactors

- Sampling permanent structures inside core (e.g. pressure tube)
- Trace elements in zircaloy
- Sensitivity analysis to identify isotopic ratios that tell about the history

Isotopic ratio	Sensitivity	Explanation
0-17/0-18	Active period	Neutron capture, stable isotopes
Hf-180/Hf-182	Thermal power	2x capture via short-lived Hf-181
Sr-86/Sr-90	Shut-down time	Sr-90 decay, Sr-86 stable

Fast surrogate model & Bayesian inference

Time since reactor shutdown [days]

My verification research

Computational nuclear archaeology

Antineutrino detection

Inverse Beta Decay (IBD)

- Kinetic threshold 1.8 MeV
- Additional energy essentially transferred to positron
- Detection in scintillator via delayed coincidence of two energy depositions
- Background sources mimic signal

Monitoring radioactive waste

M. Wittel, M. Göttsche, ESARDA Bulletin 60, 2020

Is a radioactive waste site as declared?

330 m

Hanford Site S Tank Farm Washington State, USA

Google Maps, 2020

Is a radioactive waste site as declared?

Organic scintillator, 80 m³ detection volume, no background considered

Time Projection Chamber

Time Projection Chamber: First results

T. Radermacher, J. Bosse, S. Friedrich, M. Göttsche, S. Roth, G. Schwefer, Nucl. Instr. Meth. A 1054, 2023

Thank you for your attention.