

Plans for Fermilab Dark Wave Lab

Andrew Sonnenschein, *Fermilab* Axions 2024 University of Florida 26-April-2024

Dark Matter Searches: WIMPs Vs Axions

- WIMPs and WIMP-like
 - Field started with Goodman and Witten PRD 1985, "Detectability of Certain Dark Matter Candidates".
 - First experiments by Avignone & Caldwell groups in 1987.
 - Dramatic progress in attempted WIMP detection from 1987- 2020. Most models previously considered promising are now excluded.

- Axions and ALPs
 - Field starts with Sikivie 1983 PRL "Experimental Tests of Invisible axion", followed by Sullivan and Tanner experiments.
 - Relatively few completed experiments between 1983-2020. Dominated by one technique.
 - New techniques needed to reach required sensitivity.

Axion Detection–Future Program

- Experimental axion search field is bursting with new ideas.
- Future program claims to cover QCD axion band from ~10⁻⁹ eV to 1 eV using a combination of techniques.
- Very ambitious!
- Similar to what happened in WIMP field in the 1990s-2020s
- Not clear how long this will take!

Need for National Lab/ University Partnerships

- Techniques exploring axion-photon coupling generally benefit from highest possible magnetic field strength and volume (signal ~ B²V) and lowest possible temperature for noise reduction.
- Most successful experiments so far– ADMX, CAST, CAPP required large investments in magnet and cryo infrastructure.
- One lesson from ADMX-- difficult to build and maintain reliable systems at this scale over long running periods in a university environment.
- Requirements for large-scale infrastructure, technical support and safety best met at a national lab, while universities provide sophisticated sensor development, prototyping and data analysis.
- By leveraging lab resources, university groups can progress quickly from initial concept to a working experiment.

ADMX-G2 Operations

Large Volume Magnets

How to use large volume solenoids to detect axions?

B ₀ ² V (T ² m ³)	Magnet	Application/ Technology	Location	Field (T)	Bore (m)	Len (m)	Energy (MJ)	Cost (\$M)
12000	ITER CS	Fusion/Sn CICC	Cadarache	13	2.6	13	6400	>500
5300	CMS	Detector/Ti SRC	CERN	3.8	6	13	2660	>4581
650	Tore Supra	Fusion/Ti Mono Ventilated	Cadarache	9	1.8	3	600	
430	Iseult	MRI/Ti SRC	CEA	11.75	1	4	338	
320	ITER CSMC	Fusion/Sn CICC	JAEA	13	1.1	2	640	>50 ²
290	60 T out	HF/HTS CICC	MagLab	42	0.4	1.5	1100	
250	Magnex	MRI/Mono	Minnesota	10.5	0.88	3	286	7.8
190	Magnex	MRI/Mono	Juelich	9.4	0.9	3	190	
70	45 T out	HF/Nb ₃ Sn CICC	MagLab	14	0.7	1	100	14
12	ADMX	Axion/NbTi mono	U Wash	7	0.5	1.1	14	0.4
5	900 MHz	NMR/Sn mono	MagLab	21.1	0.11	0.6	40	15

Compilation by Mark Bird, NHMFL

High Field Magnets

- Current ADMX magnet
 - 8.5-Tesla x 60 cm solenoid (normally operated at 7.6 Tesla)
 - Nb-Ti superconductor at 4 Kelvin.
- A step up to higher field requires different superconductor technology.
 - NbTi -> 10 Tesla
 - Nb₃Sn -> 15 Tesla
 - BI-2212, YBCO -> 30 Tesla or more, but technology is not yet mature.
 - 30 mm diameter magnet x 30 tesla at National High Magnetic Field Lab (Tallahassee) in 2019.
 - Meter scale 20-tesla magnet demonstrated by Commonwealth Fusion Systems in Fall 2021.

ADMX 7.6 Tesla NbTi

NHMFL 30 Tesla YBCO

2018: 1st 32 T all-SC test

Proposal: Dark Wave Laboratory at Fermilab

- We propose to provide a facility able to host several small scale and at least one larger scale axion search experiment.
- We will begin by installing the 9.4 Tesla MRI magnet selected for the ADMX-EFR experiment. This magnet is significantly larger than needed for the ADMX-EFR detector alone and, with careful planning, may host one or more smaller additional experiments.
- The cryogenic system and magnetic shielding will also be planned to allow for additional experiments.
- The Dark Wave Lab will include shop, assembly and testing areas and will have robust, reliable infrastructure for operating cryogenic equipment.
- A mechanism will be put in place for proposal of new experiments to share space in the magnet.
- Over time, responding to identified needs, additional magnets and cryostats will be installed in the Dark Wave Lab.

ADMX-EFR and its 9.4 Tesla MRI Magnet

- ADMX-EFR is the proposed next step for ADMX collaboration after currently operating ADMX-G2 experiment at U. Washington.
- Design studies and magnet testing funded by DOE Dark Matter New Initiatives program in 2019-2025.
- Will use an 18-cavity array with coherent signal combining to scan for QCD axion in 2-4 GHz range (8.3-16.5 µeV in mass)
- See talk by Carosi in this Workshop.

9.4 Tesla MRI Magnet from University of Illinois, Chicago

- ADMX-EFR will reuse a 9.4 Tesla, 800 mm bore MRI magnet currently at University of Illinois Chicago medical center. Was world's highest field whole-body MRI magnet when installed in 2003.
- Current status: final sign off by Fermilab and UIC purchasing and legal departments complete.
 Rigging plans being reviewed. Preparing for magnet move in late May/ Early June.
- Magnet is currently warm and at zero field. We will reinstall at Fermilab and ramp to full field as a test of magnet reliability.
- An opportunity to do axion physics before start of ADMX-EFR.

	ADMX-G2 Magnet	ADMX-EFR Magnet
Peak Field	7.6 T	9.4 T
Bore diameter	530 mm	800 mm
Magnet length	1117 mm	3100 mm
Cryostat diameter	1295 mm	2580 mm
Stored Energy	16.5 MJ	140 MJ
Weight	6 tons	45 tons
Helium consumption	3 liters/ hour	0.35 liters/hour
Current	204 Amps	220 Amps
Persistent current	No	Yes
Orientation	Vertical	Horizontal
Manufacturer	Wang NMR	GE Medical Systems
Manufacture date	1993	2003

Magnet Coming to Fermilab This Summer

Nearly 3-hour transport via air-ride truck. Max speed ~35 mph. Mostly smooth roads. Many stops. No railroad crossings. Test transport limited accelerations to <0.95 g

Site for Dark Wave Lab: PW8 Hall

- Fermilab cleared out the PW8 hall for use by ADMX-EFR.
- Had been used for storage last 25 years after discovery of Tao neutrino in DONUT experiment.
- 13,000 square ft available space including adjacent HIL service building— enough for multiple magnets plus significant testing facilities, office and meeting space.
- Could benefit from renovation. Focusing now on putting in reliable services such as helium recovery, chilled water, electrical power.

Office/ Service Building for Dark Wave Lab

- 8,000 Square ft building outside the stray magnetic field
- Utilities and control systems
- Helium compressors
- Control room, meeting rooms, rest rooms, shop and benchtop assembly areas
- Small test cryostats

ADMX-EFR Cryogenic System With 2 Dilution Refrigerators

4-Kelvin System For Early Experiments (2027?)

- Relatively low-cost system to provide 4 Kelvin environment for early experiments.
- Payload can be inserted into bore through the side access hatch using a rail-track system.
 Rails (not shown here) are attached to the inside of the PT2 shield.
- No zero field region in initial plan- ok for transistor amplifiers.
- Could provide sub-K cooling for electronics package with small sorption fridge.

Notional Schedule for Dark Wave Lab Operations

- 9.4 Tesla solenoid delivery to Fermilab late May/ Early June 2024.
- ~ 1 year to commission magnet.
- Potential to run room-temperature pilot experiments in 2025-2026.
- A 4-Kelvin cryostat could be available in 2027, enabling more sensitive experiments.

preliminary schedule concept

- ADMX-EFR project includes large 100-mK cryostat, which could be ready as soon as 2028 (depends on on DMNI funding decision). May allow space for one or more additional experiment packages to run in parallel with ADMX-EFR.
- It may be sensible to plan for one or more additional magnets for use beyond 2030.

Dark Wave Lab Workshop April 15-16 2024

- https://indico.fnal.gov/event/63051/
- Assessment of community interest in common facilities.
 - What experiments would likely be proposed and what facilities are needed for them?
 - Gather material for White Paper and presentation to Fermilab Physics Advisory Committee.
- Identify best near-term uses (2025- 2028) for 9.4 Tesla
 MRI magnet with bore at room temperature or 4 kelvin.
- Form new experiment collaborations & expand the field of potential Dark Wave Lab users.
 - There are quite a few interesting experiment ideas in this field that are not yet being seriously pursued. More good ideas than people or funding.
 - Theorists meet experimentalists- maybe someone will work on your idea.

~80 participants from US and international labs and universities

Early projects for Dark Wave Lab

- We identified ~10 projects that could go into the 9.4 Tesla MRI magnet before the start of ADMX-EFR.
- Most not sensitive to QCD axion band but would search for ALPs while developing detector technologies.
- Significant interest in tests with room temperature magnet bore
 – could start as soon as 2025.
- Some groups are ready now
 – have room temperature prototypes operating without a magnetic field.
- 4 Kelvin experiments beginning in 2027.
- 100 mK experiments in parallel with ADMX-EFR as soon as 2028– depends on DMNI funding timeline.

Experiment	Collaboration	Туре	Room Temp?	4 Kelvin
ADMX-EFR	ADMX	Cavity	•	•
GigaBREAD	BREAD	Dish	•	
ADMX-SLIC	Florida + ?	LC	•	
ADMX-VERA	Stanford, Washington, LLNL	Cavity	•	•
Orpheus	Washington	Dielectric Disc	•	
MADMAX	MADMAX	Dielectric Disc	•	
ORGAN	UWa, Swinburn	Reentrant cavity	•	
TBD	Florida + Uwa+ Swinburne?	Reentrant cavity	•	•
SC Cavities 2-10 GHz	SQMS, CAPP?	Cavity		
Large 300 MHz Cavity	ADMX?	Cavity		

Dark Wave Lab Summary

- Goal is to help realize ambitions of axion search field on a reasonable cost and time scale.
- Give community access to large scale magnet and cryo facilities.
- Workshop outcomes:
 - Strong interest from US and international groups— 20 talks on possible experiments.
 - About 9 projects would make early use of magnet with room temperature or 4 K bore.
 - Test prototype detectors and search for ALPs.

Next steps: White Paper, Presentations to Fermilab PAC.

Additional Slides

Axion Electrodynamics

- Axions interact weakly with photons small axion to photon coupling $g_{a\gamma\gamma}$
- Besides the normal electric field E(x,t) and magnetic field B(x,t), there is an axion field a(x,t).
- Maxwell's equations modified with new terms to include effects of a.
- The new field is always multiplied by the very small $g_{a\gamma\gamma}$

 $\nabla \cdot \mathbf{E} = g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a$ $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ $\nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = g_{a\gamma\gamma} \left(\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t} \right)$ $\nabla \cdot \mathbf{B} = 0$

• There are plane wave solutions for the a(x, t), oscillating with a frequency corresponding to the axion mass $(\omega_a = m_a c^2/\hbar)$.

 $a(x,t) \propto \sqrt{\rho_{DM}} \cos(\omega_a t - kx)$

Large Background Magnetic Field

- First step to discover axions: <u>get a big magnet</u>
- In the presence of a static magnetic field B_0 , the axion field sources an effective oscillating electric current J_a

$$J_a = g_{a\gamma\gamma} B_0 \frac{\partial a}{\partial t}$$

$$\nabla \cdot \mathbf{E} = g_{a\gamma\gamma} \mathbf{B} \cdot \nabla a$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \qquad \mathbf{J}_{a}$$

$$\nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = g_{a\gamma\gamma} \left(\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t} \right)$$

$$\nabla \times \mathbf{B} - \frac{\partial E}{\partial t} = J_{a}$$

$$\nabla \cdot \mathbf{B} = 0$$

Oscillating Fictitious Current

• Will produce the same electromagnetic response as a normal electric current.

 $\omega_a = \frac{m_a c^2}{\hbar}$

• Oscillates at frequency ω_a determined by axion mass

Electric and Magnetic Field Response

• The fictitious AC current $J_a(t)$ can source real oscillating magnetic field $\vec{B}_a(t)$

Electric and Magnetic Field Response

- There is also an oscillating electric field in the axial direction $E_a(t)$
- Relative strength of the oscillating electric and magnetic fields depends on boundary conditions & and size of apparatus compared to axion wavelength

Axion Detection Through Magnetic Flux

- Collect the magnetic flux sourced by J_a with a transformer coil and measure induced current with a SQUID.
- Works for solenoidal magnets (ADMX-SLIC, DMRADIO) or toroidal (ABRACADABRA, SHAFT)
- Sensitive to light axions with wavelength big compared to magnet size.

Gramolin et al., Nature Physics 17, 79-84, 2021

Emission of Electromagnetic Wave From Conducting Surface

- Insert a conducting surface into the magnet bore.
- Currents will appear in the conductor driven by the axion induced electric field oscillations.
- A traveling electromagnetic wave is emitted from the surface to satisfy boundary conditions.

"Dish Antenna" Experiments

- Arrange for the axion induced surface emission to be focused onto a detector.
- Signal is very weak. Only around 10⁻²⁶ watts for a big magnet.

$$P_{signal} = 8.27 \cdot 10^{-26} W \cdot \left(\frac{A}{10 \ m^2}\right) \left(\frac{B_{\parallel}}{10 \ \text{Tesla}}\right)^2 \left(\frac{\rho_{DM}}{0.3 \ GeV/cm^3}\right) \left(\frac{g_{a\gamma\gamma}}{3.92 \cdot 10^{-16} \ GeV^{-1}}\right)^2 \left(\frac{1 \ \mu eV}{m_a}\right)^2$$

• More on this later...

Horns, Jaeckel, Lindner, Lobanov, Redondo and Ringwald, 2012

Signal Enhancement in a Resonant Cavity

- Build a metal box (cavity) inside the magnet
- The conducting cavity walls emit radiation
- Cavity will resonate at discrete frequencies when integer number of wavelengths fit inside.
- Resonance condition when $\omega_{cavity} = \omega_{axion} = \frac{m_a c^2}{\hbar}$ Power enhancement!

Pumped Cavity Mode

Signal

- Power buildup occurs when cavity resonance frequency is matched to axion mass.
- Signal Power ~10⁻²²-10⁻²³ W at 1 GHz for typical cavity and magnet parameters.
- Three orders of magnitude more than a non-resonant dish antenna.

Experiments

RBF (1980s)

U Florida

HAYSTAC

CAPP/CULTASK

ADMX

KLASH

TM₀₁₀ Mode

Complementarity of Detection Techniques

Extension of Sensitivity to Higher Frequency

- Effective scan rate of ADMX \approx 1 MHz/ day
- As we move up in frequency **f**,
 - Volume *per cavity* decreases as 1/**f**³
 - Resonator quality factor decreases as 1/f^{2/3}
 - Noise power from Standard Quantum Limit increases as **f**.
- Need to increase number of cavities, magnetic field, Q to maintain signal power as frequency increases.

Scan Rate Vs Frequency & other parameters

Magnets

- Current ADMX magnet
 - 8.5-Tesla x 60 cm solenoid (normally operated at 7.6 Tesla)
 - Nb-Ti superconductor at 4 Kelvin
 - 25 years old-- Manufactured in 1993 by Wang NMR, Livermore CA.
- A step up to higher field requires different superconductor technology.
 - NbTi -> 10 Tesla
 - Nb₃Sn -> 15 Tesla
 - BI-2212, YBCO -> 30 Tesla or more, but technology is not yet mature.
 - 30 mm diameter magnet x 30 tesla at National High Magnetic Field Lab (Tallahassee) in 2019.
 - Meter scale 20-tesla magnet demonstrated by Commonwealth Fusion Systems in Fall 2021.

ADMX 7.6 Tesla NbTi

NHMFL 30 Tesla YBCO

2018: 1st 32 T all-SC test

Axion Induced Radiation from A Magnetized Metal Slab

- Axions interact with a static magnetic field producing an oscillating parallel electric field in free space
- A conducting surface in this field emits a plane wave perpendicular to surface.

• Radiated power is very low:

$$P_{signal} = 8.27 \cdot 10^{-26} W \cdot \left(\frac{A}{10 \ m^2}\right) \left(\frac{B_{\parallel}}{10 \ \text{Tesla}}\right)^2 \left(\frac{\rho_{DM}}{0.3 \ GeV/cm^3}\right) \left(\frac{g_{a\gamma\gamma}}{3.92 \cdot 10^{-16} \ GeV^{-1}}\right)^2 \left(\frac{1 \ \mu eV}{m_a}\right)^2$$

• But no detector tuning is required!

"Dish antenna" (Horns et al., 2012)