

A Quantum Description of Wave Dark Matter

w/ Dhong Yeon Cheong & Lian-Tao Wang

NICK RODD | Axions 2024 | 27 April 2024

Motivation

Establish a more rigorous description of wave DM and the wave-particle boundary

Outline

1. What is the density matrix of dark matter?

2. A rigorous definition of the coherence time

3. A single calculation across the wave-particle boundary

Part I

The Density Matrix of Dark Matter

Recall, coherent states defined by $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$ are complete (but not orthogonal), so can decompose density matrix as

$$\hat{\rho} = \int d^2 \alpha P(\alpha) \, | \, \alpha \rangle \langle \alpha \, |$$

Glauber-Sudarshan *P* [Glauber 1963], [Sudarshan 1963]

Recall, coherent states defined by $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$ are complete (but not orthogonal), so can decompose density matrix as

$$\hat{\rho} = \int d^2 \alpha P(\alpha) \, | \, \alpha \rangle \langle \alpha \, |$$

Glauber-Sudarshan *P* [Glauber 1963], [Sudarshan 1963]

Properties of $P(\alpha)$:

$$\hat{\rho}^{\dagger} = \hat{\rho} \Rightarrow P(\alpha) \in \mathbb{R}$$

Tr $[\hat{\rho}] = 1 \Rightarrow \int d^2 \alpha P(\alpha) = 1$

Recall, coherent states defined by $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$ are complete (but not orthogonal), so can decompose density matrix as

$$\hat{\rho} = \int d^2 \alpha P(\alpha) \, | \, \alpha \rangle \langle \alpha \, |$$

Glauber-Sudarshan *P* [Glauber 1963], [Sudarshan 1963]

Properties of $P(\alpha)$:

$$\hat{\rho}^{\dagger} = \hat{\rho} \Rightarrow P(\alpha) \in \mathbb{R}$$

 $\operatorname{Tr}[\hat{\rho}] = 1 \Rightarrow \int d^2 \alpha P(\alpha) = 1$

NB: $P(\alpha)$ is not a probability distribution, $P(\alpha) < 0$ allowed

[Glauber 1963]: $P(\alpha)$ obeys the central limit theorem So generally expect (e.g. thermal radiation) that

$$\hat{\rho}_{\mathbf{k}} = \int d^{2} \alpha_{\mathbf{k}} \left(\frac{1}{\pi \langle N_{\mathbf{k}} \rangle} \exp\left[-\frac{|\alpha_{\mathbf{k}}|^{2}}{\langle N_{\mathbf{k}} \rangle} \right] \right) |\alpha_{\mathbf{k}} \rangle \langle \alpha_{\mathbf{k}} | P_{(\alpha)} = \delta^{(2)}(\alpha - \beta)$$
e of the field
$$P(\alpha_{\mathbf{k}})$$

k: moc

[Glauber 1963]: $P(\alpha)$ obeys the central limit theorem So generally expect (e.g. thermal radiation) that

$$\hat{\rho}_{\mathbf{k}} = \int d^2 \alpha_{\mathbf{k}} \underbrace{\left(\frac{1}{\pi \langle N_{\mathbf{k}} \rangle} \exp\left[-\frac{|\alpha_{\mathbf{k}}|^2}{\langle N_{\mathbf{k}} \rangle}\right]\right)}_{P(\alpha_{\mathbf{k}})} |\alpha_{\mathbf{k}} \rangle \langle \alpha_{\mathbf{k}}|$$

 $\langle N_{\bf k} \rangle$ is the mean occupation of the mode, specified by

$$\langle N_{\mathbf{k}} \rangle = \frac{\text{density of particles}}{\text{density of states}}$$

[Glauber 1963]: $P(\alpha)$ obeys the central limit theorem So generally expect (e.g. thermal radiation) that

$$\hat{\rho}_{\mathbf{k}} = \int d^2 \alpha_{\mathbf{k}} \underbrace{\left(\frac{1}{\pi \langle N_{\mathbf{k}} \rangle} \exp\left[-\frac{|\alpha_{\mathbf{k}}|^2}{\langle N_{\mathbf{k}} \rangle}\right]\right)}_{P(\alpha_{\mathbf{k}})} |\alpha_{\mathbf{k}} \rangle \langle \alpha_{\mathbf{k}}|$$

 $\langle N_{\mathbf{k}} \rangle$ is the mean occupation of the mode, specified by

$$\langle N_{\mathbf{k}} \rangle = \frac{\text{density of particles}}{\text{density of states}} \simeq \frac{(2\pi\hbar)^3}{g_s} \bar{n} p(\mathbf{k}) \simeq \text{for local DM}$$

Axion: $g_s = 1$
Dark photon: $g_s = 3$

[Glauber 1963]: $P(\alpha)$ obeys the central limit theorem So generally expect (e.g. thermal radiation) that

$$\hat{\rho}_{\mathbf{k}} = \int d^2 \alpha_{\mathbf{k}} \underbrace{\left(\frac{1}{\pi \langle N_{\mathbf{k}} \rangle} \exp\left[-\frac{|\alpha_{\mathbf{k}}|^2}{\langle N_{\mathbf{k}} \rangle}\right]\right)}_{P(\alpha_{\mathbf{k}})} |\alpha_{\mathbf{k}} \rangle \langle \alpha_{\mathbf{k}}|$$

 $\langle N_{\mathbf{k}} \rangle \simeq \bar{n} \times V_{\text{coherence}} \simeq \#$ of indistinguishable particles

Defines wave-particle boundary (given $\rho_{\rm DM}$ etc) Axions: $m \simeq 14.4~{\rm eV}$ Dark photons: $m \simeq 11.0~{\rm eV}$

Let's determine the implications for a scalar field

$$\hat{\phi}(t,\mathbf{x}) = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} \left(\hat{a}_{\mathbf{k}} e^{-ik\cdot x} + \hat{a}_{\mathbf{k}}^{\dagger} e^{ik\cdot x} \right)$$

Let's determine the implications for a scalar field

$$\hat{\phi}(t,\mathbf{x}) = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} \left(\hat{a}_{\mathbf{k}} e^{-ik\cdot x} + \hat{a}_{\mathbf{k}}^{\dagger} e^{ik\cdot x} \right)$$

As usual,
$$\langle \hat{\mathcal{O}} \rangle = \text{Tr}[\hat{\rho} \, \hat{\mathcal{O}}]$$
, but if $[\hat{a}, \hat{a}^{\dagger}] = 0$, set $\hat{a}_{\mathbf{k}}^{(\dagger)} = \alpha_{\mathbf{k}}^{(\ast)}$ $\begin{bmatrix} \hat{a}, \hat{a}^{\dagger} \end{bmatrix} \neq 0$

Let's determine the implications for a scalar field

$$\hat{\phi}(t,\mathbf{x}) = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} \left(\hat{a}_{\mathbf{k}} e^{-ik\cdot x} + \hat{a}_{\mathbf{k}}^{\dagger} e^{ik\cdot x} \right)$$

As usual,
$$\langle \hat{\mathcal{O}} \rangle = \text{Tr}[\hat{\rho} \, \hat{\mathcal{O}}]$$
, but if $[\hat{a}, \hat{a}^{\dagger}] = 0$, set $\hat{a}_{\mathbf{k}}^{(\dagger)} = \alpha_{\mathbf{k}}^{(\ast)}$ in parts $\hat{\mathcal{O}} \rangle = \frac{1}{2} \int_{\mathbf{k}} \sqrt{\frac{2}{V \omega_{\mathbf{k}}}} \text{Re}\left[\alpha_{\mathbf{k}} e^{-ik \cdot x}\right]$

with $\alpha_{\mathbf{k}}$ drawn from a Gaussian distribution, $P(\alpha_{\mathbf{k}})$

≠ (

DENSITY MATRIX Scalar Field Statistics

Let's determine the implications for a scalar field

$$\hat{\phi}(t, \mathbf{x}) = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} \left(\hat{a}_{\mathbf{k}} e^{-ik \cdot x} + \hat{a}_{\mathbf{k}}^{\dagger} e^{ik \cdot x} \right)$$

As usual,
$$\langle \hat{\mathcal{O}} \rangle = \operatorname{Tr}[\hat{\rho} \, \hat{\mathcal{O}}]$$
, but if $[\hat{a}, \hat{a}^{\dagger}] = 0$, set $\hat{a}_{\mathbf{k}}^{(\dagger)} = \alpha_{\mathbf{k}}^{(*)}$
 $\Rightarrow \phi(t, \mathbf{x}) = \sum_{\mathbf{k}} \sqrt{\frac{2}{V\omega_{\mathbf{k}}}} \operatorname{Re}\left[\alpha_{\mathbf{k}} e^{-ik \cdot x}\right] \sim \cos(mt)$

For a single mode

with $\alpha_{\mathbf{k}}$ drawn from a Gaussian distribution, $P(\alpha_{\mathbf{k}})$

Let's determine the implications for a scalar field

$$\hat{\phi}(t, \mathbf{x}) = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} \left(\hat{a}_{\mathbf{k}} e^{-ik \cdot x} + \hat{a}_{\mathbf{k}}^{\dagger} e^{ik \cdot x} \right)$$

As usual,
$$\langle \hat{\mathcal{O}} \rangle = \text{Tr}[\hat{\rho} \, \hat{\mathcal{O}}]$$
, but if $[\hat{a}, \hat{a}^{\dagger}] = 0$, set $\hat{a}_{\mathbf{k}}^{(\dagger)} = \alpha_{\mathbf{k}}^{(*)}$

$$\Rightarrow \phi(t, \mathbf{x}) = \sum_{\mathbf{k}} \sqrt{\frac{2}{V\omega_{\mathbf{k}}}} \operatorname{Re} \left[\alpha_{\mathbf{k}} e^{-ik \cdot x}\right] \sim \cos(mt)$$
For a single mode

with $\alpha_{\mathbf{k}}$ drawn from a Gaussian distribution, $P(\alpha_{\mathbf{k}})$

 $\Rightarrow \phi$ is a Gaussian random field, with

$$\phi(t, \mathbf{x}) \rangle = 0 \& \langle \phi^2(t, \mathbf{x}) \rangle \simeq \frac{\rho}{m^2}$$

Also $\partial_t \phi \sim \operatorname{Im}[\alpha]$ is an independent Gaussian random field

 $[\hat{a}, \hat{a}^{\dagger}] \neq 0$

in part

DENSITY MATRIX $P(\alpha)$ Experimentally Testable

Key assumption: Gaussian $P(\alpha)$

May not be true, e.g. coherent state or Bose-Einstein Condensate

BEC: e.g. [Sikivie, Yang 2009] [Erken, Sikivie, Tam, Yang 2012]

Could resolve with experiment (post discovery of DM): look for non-Gaussianities in the fluctuations of ϕ

Part II

The Coherence Time

COHERENCE TIME Autocorrelation function

Having understood $\langle \phi^n(t, \mathbf{x}) \rangle$, natural to next consider

 $\Gamma(\tau, \mathbf{d}) = \langle \phi(t, \mathbf{x}) \phi(t + \tau, \mathbf{x} + \mathbf{d}) \rangle$

Assume stationary/homogeneous $\Rightarrow \langle \mathcal{O} \rangle$ independent of (t, \mathbf{x})

Intuition: how much does knowledge of the field at one point tell you about it at another?

COHERENCE TIME Autocorrelation function

Having understood $\langle \phi^n(t, \mathbf{x}) \rangle$, natural to next consider

 $\Gamma(\tau, \mathbf{d}) = \langle \phi(t, \mathbf{x}) \phi(t + \tau, \mathbf{x} + \mathbf{d}) \rangle$

Assume stationary/homogeneous $\Rightarrow \langle \mathcal{O} \rangle$ independent of (t, \mathbf{x})

If stationary^{*} can derive (with $\mathbf{d} = 0$)

 $\Gamma(\tau) = \frac{\rho}{\bar{\omega}} \int d\omega \, \frac{p(\omega)}{\omega} \cos(\omega\tau)$

*Need a slightly stronger version to show this
Also have results for d ≠ 0
Cf. [Derevianko 2018]

COHERENCE TIME Autocorrelation function

Having understood $\langle \phi^n(t, \mathbf{x}) \rangle$, natural to next consider

 $\Gamma(\tau, \mathbf{d}) = \langle \phi(t, \mathbf{x}) \phi(t + \tau, \mathbf{x} + \mathbf{d}) \rangle$

Assume stationary/homogeneous $\Rightarrow \langle \mathcal{O} \rangle$ independent of (t, \mathbf{x})

If stationary^{*} can derive (with $\mathbf{d} = 0$)

$$\Gamma(\tau) = \frac{\rho}{\bar{\omega}} \int d\omega \, \frac{p(\omega)}{\omega} \cos(\omega\tau)$$

*Need a slightly stronger version to show this
Also have results for d ≠ 0
Cf. [Derevianko 2018]

For DM,
$$\omega \simeq m + \frac{1}{2}mv^2$$
, with v set by e.g.

$$f(\mathbf{v}) = \frac{1}{\pi^{3/2}v_0^3}e^{-(\mathbf{v}+\mathbf{v}_\odot)^2/v_0^2}$$
tandard Halo
Model

Autocorrelation function

$$\Gamma(\tau) = \frac{\rho}{\bar{\omega}} \int d\omega \, \frac{p(\omega)}{\omega} \cos(\omega \tau)$$

Autocorrelation function

$$\Gamma(\tau) = \frac{\rho}{\bar{\omega}} \int d\omega \, \frac{p(\omega)}{\omega} \cos(\omega\tau)$$

Define:
$$\tau_c = \int_{-\infty}^{\infty} d\tau \left| \frac{\Gamma(\tau)}{\Gamma(0)} \right|^2$$

Common def. in quantum optics, e.g. [Mandel & Wolf, "Optical Coherence and Quantum Optics"] Cf. [Masia-Roig+ 2023]

Define:
$$\tau_c = \int_{-\infty}^{\infty} d\tau \left| \frac{\Gamma(\tau)}{\Gamma(0)} \right|^2$$

Common def. in quantum optics, e.g. [Mandel & Wolf, "Optical Coherence and Quantum Optics"] Cf. [Masia-Roig+ 2023]

Example 1:
$$\Gamma(\tau) = Ae^{-|\tau|/\bar{\tau}_c}$$
, find $\tau_c = \bar{\tau}_c$

Define:
$$\tau_c = \int_{-\infty}^{\infty} d\tau \left| \frac{\Gamma(\tau)}{\Gamma(0)} \right|^2$$

Common def. in quantum optics, e.g. [Mandel & Wolf, "Optical Coherence and Quantum Optics"] Cf. [Masia-Roig+ 2023]

Example 1:
$$\Gamma(\tau) = Ae^{-|\tau|/\bar{\tau}_c}$$
, find $\tau_c = \bar{\tau}_c$

Example 2: DM with the SHM

$$\tau_{c} = \frac{\sqrt{2\pi} \mathrm{Erf}\left[\sqrt{2}v_{\odot}/v_{0}\right]}{mv_{0}v_{\odot}} \left(1 + \frac{3v_{0}^{2}}{4} - \frac{v_{0}v_{\odot}e^{-2v_{\odot}^{2}/v_{0}^{2}}}{\sqrt{2\pi} \mathrm{Erf}\left[\sqrt{2}v_{\odot}/v_{0}\right]} + \mathcal{O}(v^{4})\right)$$

Define:
$$\tau_c = \int_{-\infty}^{\infty} d\tau \left| \frac{\Gamma(\tau)}{\Gamma(0)} \right|^2$$

Common def. in quantum optics, e.g. [Mandel & Wolf, "Optical Coherence and Quantum Optics"] Cf. [Masia-Roig+ 2023]

Example 1:
$$\Gamma(\tau) = Ae^{-|\tau|/\bar{\tau}_c}$$
, find $\tau_c = \bar{\tau}_c$

Example 2: DM with the SHM

$$\tau_{c} = \frac{\sqrt{2\pi} \mathrm{Erf}\left[\sqrt{2}v_{\odot}/v_{0}\right]}{mv_{0}v_{\odot}} \left(1 + \frac{3v_{0}^{2}}{4} - \frac{v_{0}v_{\odot}e^{-2v_{\odot}^{2}/v_{0}^{2}}}{\sqrt{2\pi} \mathrm{Erf}\left[\sqrt{2}v_{\odot}/v_{0}\right]} + \mathcal{O}(v^{4})\right)$$

irrelevant

But it is a precisely defined concept

Define:
$$\tau_c = \int_{-\infty}^{\infty} d\tau \left| \frac{\Gamma(\tau)}{\Gamma(0)} \right|^2$$

Common def. in quantum optics, e.g. [Mandel & Wolf, "Optical Coherence and Quantum Optics"] Cf. [Masia-Roig+ 2023]

Example 1:
$$\Gamma(\tau) = Ae^{-|\tau|/\bar{\tau}_c}$$
, find $\tau_c = \bar{\tau}_c$

Example 2: DM with the SHM

$$\tau_{c} = \frac{\sqrt{2\pi} \operatorname{Erf}\left[\sqrt{2}v_{\odot}/v_{0}\right]}{mv_{0}v_{\odot}} \left(1 + \frac{3v_{0}^{2}}{4} - \frac{v_{0}v_{\odot}e^{-2v_{\odot}^{2}/v_{0}^{2}}}{\sqrt{2\pi} \operatorname{Erf}\left[\sqrt{2}v_{\odot}/v_{0}\right]} + \mathcal{O}(v^{4})\right)$$

irrelevant
$$\simeq 2.8 \text{ s}\left(\frac{1 \text{ neV}}{m}\right)$$
But it is a precisely defined concept

Frequency Domain

By the Wiener-Khinchin theorem,

$$S(\omega) = \int_{-\infty}^{\infty} d\tau \, \Gamma(\tau) e^{i\omega\tau}$$

Frequency Domain

By the Wiener-Khinchin theorem,

$$S(\omega) = \int_{-\infty}^{\infty} d\tau \, \Gamma(\tau) e^{i\omega\tau}$$

Can use to show that,

$$\Gamma(\tau) = \frac{\rho}{\bar{\omega}} \int d\omega \, \frac{p(\omega)}{\omega} \cos(\omega\tau) \quad \Rightarrow \quad S(\omega) = \frac{\pi\rho}{\bar{\omega}} \frac{p(\omega)}{\omega}$$
Cf. [Dror, Murayama, NLR 2021

Frequency Domain

By the Wiener-Khinchin theorem,

$$S(\omega) = \int_{-\infty}^{\infty} d\tau \, \Gamma(\tau) e^{i\omega\tau}$$

Can use to show that,

$$\Gamma(\tau) = \frac{\rho}{\bar{\omega}} \int d\omega \, \frac{p(\omega)}{\omega} \cos(\omega\tau) \quad \Rightarrow \quad S(\omega) = \frac{\pi\rho}{\bar{\omega}} \frac{p(\omega)}{\omega}$$

Cf. [Dror, Murayama, NLR 2021]

Further, width of $S(\omega)$ is $\Delta \omega = 1/\tau_c$

Intuition: τ_c measures how long $\phi(t) = \phi_0 \cos(mt)$ is a good approximation See also [Dror, Gori, Leedom, NLR 2023] Part III

Wave-Particle Boundary

So far $[\hat{a}, \hat{a}^{\dagger}] \simeq 0$ (justify by $N \gg 1$)

Now $[\hat{a}, \hat{a}^{\dagger}] = 1$, but for simplicity take a single mode ($\omega = m$)

Question: what is the energy in a box of volume V_c ?

Similar result holds for calculation in a finite physical volume

Rewrite Gaussian $\hat{\rho}$ in the number basis

$$\hat{\rho} = \int d^2 \alpha \, \frac{e^{-|\alpha|^2/\langle N \rangle}}{\pi \langle N \rangle} \, |\alpha\rangle \langle \alpha |$$

$$= \frac{1}{1 + \langle N \rangle} \sum_{k=0}^{\infty} \left(\frac{\langle N \rangle}{1 + \langle N \rangle} \right)^k |k\rangle \langle k |$$
Here $k \in \mathbb{N}$, not wavevector!

Can use to show Tr[$\hat{\rho}^2$] = $(1 + 2\langle N \rangle)^{-1}$

Rewrite Gaussian $\hat{\rho}$ in the number basis

$$\hat{\rho} = \int d^2 \alpha \, \frac{e^{-|\alpha|^2/\langle N \rangle}}{\pi \langle N \rangle} \, |\alpha\rangle \langle \alpha |$$

$$= \frac{1}{1 + \langle N \rangle} \sum_{k=0}^{\infty} \left(\frac{\langle N \rangle}{1 + \langle N \rangle} \right)^k |k\rangle \langle k |$$
Here $k \in \mathbb{N}$, not wavevector!

Can use to show Tr[$\hat{\rho}^2$] = $(1 + 2\langle N \rangle)^{-1}$

Probability of seeing k quanta in
$$V_c$$
 is
$$n(k) = \frac{1}{N} \left(\frac{\langle N \rangle}{N}\right)^k$$

$$p(k) = \frac{1}{1 + \langle N \rangle} \left(\frac{\langle N \rangle}{1 + \langle N \rangle} \right)$$

For a single mode: $E = m \times k$, so we can just study k

The mean and standard deviation of *k*:

$$\mu_{k} = \langle k \rangle = \langle N \rangle$$
$$\sigma_{k}^{2} = \langle k^{2} \rangle - \langle k \rangle^{2} = \langle N \rangle (1 + \langle N \rangle)$$

The mean and standard deviation of *k*:

$$\mu_{k} = \langle k \rangle = \langle N \rangle$$
$$\sigma_{k}^{2} = \langle k^{2} \rangle - \langle k \rangle^{2} = \langle N \rangle (1 + \langle N \rangle)$$

Holds for all higher moments

The mean and standard deviation of k: $\mu_k = \langle k \rangle = \langle N \rangle$ $\sigma_k^2 = \langle k^2 \rangle - \langle k \rangle^2 = \langle N \rangle (1 + \langle N \rangle)$ For $\langle N \rangle \gg 1$, $\sigma_k^2 = \mu_k^2$ For $\langle N \rangle \ll 1$, $\sigma_k^2 = \mu_k$ Exponentially distributed Poisson distributed

Holds for all higher moments

The mean and standard deviation of *k*:

$$\mu_{k} = \langle k \rangle = \langle N \rangle$$

$$\sigma_{k}^{2} = \langle k^{2} \rangle - \langle k \rangle^{2} = \langle N \rangle (1 + \langle N \rangle)$$

For $\langle N \rangle \sim 1$ neither Poisson nor exponential

Conclusion

The quantum approach opens a path to a rigorous description of wave dark matter

Open questions:

- Determine the exact $P(\alpha)$ of DM
- Interface with experiment (quantum measurement theory)
- Resolve the distribution of polarizations for dark photons
- **o** ...

