

A Quantum Description of Wave Dark Matter

 w/ Dhong Yeon Cheong \& Lian-Tao Wang
Motivation

Establish a more rigorous description of wave DM and the wave-particle boundary

Outline

1. What is the density matrix of dark matter?
2. A rigorous definition of the coherence time
3. A single calculation across the wave-particle boundary

Part I
The Density Matrix of
Dark Matter

The Density Matrix of Dark Matter

Recall, coherent states defined by $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle$ are complete (but not orthogonal), so can decompose density matrix as

$$
\hat{\rho}=\int d^{2} \alpha P(\alpha)|\alpha\rangle\langle\alpha|
$$

The Density Matrix of Dark Matter

Recall, coherent states defined by $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle$ are complete (but not orthogonal), so can decompose density matrix as

$$
\hat{\rho}=\int d^{2} \alpha P(\alpha)|\alpha\rangle\langle\alpha|
$$

Properties of $P(\alpha)$:

$$
\begin{aligned}
\hat{\rho}^{\dagger}=\hat{\rho} & \Rightarrow P(\alpha) \in \mathbb{R} \\
\operatorname{Tr}[\hat{\rho}]=1 & \Rightarrow \int d^{2} \alpha P(\alpha)=1
\end{aligned}
$$

The Density Matrix of Dark Matter

Recall, coherent states defined by $\hat{a}|\alpha\rangle=\alpha|\alpha\rangle$ are complete (but not orthogonal), so can decompose density matrix as

$$
\hat{\rho}=\int d^{2} \alpha P(\alpha)|\alpha\rangle\langle\alpha|
$$

Properties of $P(\alpha)$:

$$
\begin{aligned}
\hat{\rho}^{\dagger}=\hat{\rho} & \Rightarrow P(\alpha) \in \mathbb{R} \\
\operatorname{Tr}[\hat{\rho}]=1 & \Rightarrow \int d^{2} \alpha P(\alpha)=1
\end{aligned}
$$

NB: $P(\alpha)$ is not a probability distribution, $P(\alpha)<0$ allowed

The Density Matrix of Dark Matter

[Glauber 1963]: $P(\alpha)$ obeys the central limit theorem So generally expect (e.g. thermal radiation) that

$$
\hat{\rho}_{\mathbf{k}}=\int d^{2} \alpha_{\mathbf{k}} \underbrace{\left(\frac{1}{\pi\left\langle N_{\mathbf{k}}\right\rangle} \exp \left[-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{\left\langle N_{\mathbf{k}}\right\rangle}\right]\right)}_{P\left(\alpha_{\mathbf{k}}\right)}\left|\alpha_{\mathbf{k}}\right\rangle\left\langle\alpha_{\mathbf{k}}\right| \begin{gathered}
\substack{\text { Cif Conerent ssatee } \\
P(\alpha)=\delta^{2}(\alpha-\beta)} \\
\text { the field }
\end{gathered}
$$

The Density Matrix of Dark Matter

[Glauber 1963]: $P(\alpha)$ obeys the central limit theorem So generally expect (e.g. thermal radiation) that

$$
\hat{\rho}_{\mathbf{k}}=\int d^{2} \alpha_{\mathbf{k}} \underbrace{\left(\frac{1}{\pi\left\langle N_{\mathbf{k}}\right\rangle} \exp \left[-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{\left\langle N_{\mathbf{k}}\right\rangle}\right]\right)}_{P\left(\alpha_{\mathbf{k}}\right)}\left|\alpha_{\mathbf{k}}\right\rangle\left\langle\alpha_{\mathbf{k}}\right|
$$

$\left\langle N_{\mathbf{k}}\right\rangle$ is the mean occupation of the mode, specified by

$$
\left\langle N_{\mathbf{k}}\right\rangle=\frac{\text { density of particles }}{\text { density of states }}
$$

The Density Matrix of Dark Matter

[Glauber 1963]: $P(\alpha)$ obeys the central limit theorem So generally expect (e.g. thermal radiation) that

$$
\hat{\rho}_{\mathbf{k}}=\int d^{2} \alpha_{\mathbf{k}} \underbrace{\left(\frac{1}{\pi\left\langle N_{\mathbf{k}}\right\rangle} \exp \left[-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{\left\langle N_{\mathbf{k}}\right\rangle}\right]\right)}_{P\left(\alpha_{\mathbf{k}}\right)}\left|\alpha_{\mathbf{k}}\right\rangle\left\langle\alpha_{\mathbf{k}}\right|
$$

$\left\langle N_{\mathbf{k}}\right\rangle$ is the mean occupation of the mode, specified by

$$
\left\langle N_{\mathbf{k}}\right\rangle=\frac{\text { density of particles }}{\text { density of states }} \simeq \frac{(2 \pi \hbar)^{3}}{g_{s}} \bar{n} p(\mathbf{k})
$$

The Density Matrix of Dark Matter

[Glauber 1963]: $P(\alpha)$ obeys the central limit theorem So generally expect (e.g. thermal radiation) that

$$
\hat{\rho}_{\mathbf{k}}=\int d^{2} \alpha_{\mathbf{k}} \underbrace{\left(\frac{1}{\pi\left\langle N_{\mathbf{k}}\right\rangle} \exp \left[-\frac{\left|\alpha_{\mathbf{k}}\right|^{2}}{\left\langle N_{\mathbf{k}}\right\rangle}\right]\right)}_{P\left(\alpha_{\mathbf{k}}\right)}\left|\alpha_{\mathbf{k}}\right\rangle\left\langle\alpha_{\mathbf{k}}\right|
$$

$\left\langle N_{\mathbf{k}}\right\rangle \simeq \bar{n} \times V_{\text {coherence }} \simeq \#$ of indistinguishable particles

```
Defines wave-particle boundary (given }\mp@subsup{\rho}{\textrm{DM}}{}\mathrm{ etc)
    Axions:}m\simeq14.4 eV
    Dark photons: }m\simeq11.0\textrm{eV
```


Scalar Field Statistics

Let's determine the implications for a scalar field

$$
\hat{\phi}(t, \mathbf{x})=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(\hat{a}_{\mathbf{k}} e^{-i k \cdot x}+\hat{a}_{\mathbf{k}}^{\dagger} e^{i k \cdot x}\right)
$$

Scalar Field Statistics

Let's determine the implications for a scalar field

$$
\hat{\phi}(t, \mathbf{x})=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(\hat{a}_{\mathbf{k}} e^{-i k \cdot x}+\hat{a}_{\mathbf{k}}^{\dagger} e^{i k \cdot x}\right)
$$

As usual, $\langle\hat{O}\rangle=\operatorname{Tr}[\hat{\rho} \hat{O}]$, but if $\left[\hat{a}, \hat{a}^{\dagger}\right]=0$, set $\hat{a}_{\mathbf{k}}^{(\dagger)}=\alpha_{\mathbf{k}}^{(*)}$

Scalar Field Statistics

Let's determine the implications for a scalar field

$$
\hat{\phi}(t, \mathbf{x})=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(\hat{a}_{\mathbf{k}} e^{-i k \cdot x}+\hat{a}_{\mathbf{k}}^{\dagger} e^{i k \cdot x}\right)
$$

As usual, $\langle\hat{\mathcal{O}}\rangle=\operatorname{Tr}[\hat{\rho} \hat{\mathcal{O}}]$, but if $\left[\hat{a}, \hat{a}^{\dagger}\right]=0$, set $\hat{a}_{\mathbf{k}}^{(\dagger)}=\alpha_{\mathbf{k}}^{(*)}$

$$
\Rightarrow \quad \phi(t, \mathbf{x})=\sum_{\mathbf{k}} \sqrt{\frac{2}{V \omega_{\mathbf{k}}}} \operatorname{Re}\left[\alpha_{\mathbf{k}} e^{-i k \cdot x}\right]
$$

with $\alpha_{\mathbf{k}}$ drawn from a Gaussian distribution, $P\left(\alpha_{\mathbf{k}}\right)$

Scalar Field Statistics

Let's determine the implications for a scalar field

$$
\hat{\phi}(t, \mathbf{x})=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(\hat{a}_{\mathbf{k}} e^{-i k \cdot x}+\hat{a}_{\mathbf{k}}^{\dagger} e^{i k \cdot x}\right)
$$

As usual, $\langle\hat{\mathcal{O}}\rangle=\operatorname{Tr}[\hat{\rho} \hat{\mathcal{O}}]$, but if $\left[\hat{a}, \hat{a}^{\dagger}\right]=0$, set $\hat{a}_{\mathbf{k}}^{(\dagger)}=\alpha_{\mathbf{k}}^{(*)}$

$$
\Rightarrow \quad \phi(t, \mathbf{x})=\sum_{\mathbf{k}} \sqrt{\frac{2}{V \omega_{\mathbf{k}}}} \operatorname{Re}\left[\alpha_{\mathbf{k}} e^{-i k \cdot x}\right] \sim \cos (m t)
$$

with $\alpha_{\mathbf{k}}$ drawn from a Gaussian distribution, $P\left(\alpha_{\mathbf{k}}\right)$

Scalar Field Statistics

Let's determine the implications for a scalar field

$$
\hat{\phi}(t, \mathbf{x})=\sum_{\mathbf{k}} \frac{1}{\sqrt{2 V \omega_{\mathbf{k}}}}\left(\hat{a}_{\mathbf{k}} e^{-i k \cdot x}+\hat{a}_{\mathbf{k}}^{\dagger} e^{i k \cdot x}\right)
$$

As usual, $\langle\hat{O}\rangle=\operatorname{Tr}[\hat{\rho} \hat{O}]$, but if $\left[\hat{a}, \hat{a}^{\dagger}\right]=0$, set $\hat{a}_{\mathbf{k}}^{(\dagger)}=\alpha_{\mathbf{k}}^{(*)}$

$$
\Rightarrow \quad \phi(t, \mathbf{x})=\sum_{\mathbf{k}} \sqrt{\frac{2}{V \omega_{\mathbf{k}}}} \operatorname{Re}\left[\alpha_{\mathbf{k}} e^{-i k \cdot x}\right] \sim \cos (m t)
$$

with $\alpha_{\mathbf{k}}$ drawn from a Gaussian distribution, $P\left(\alpha_{\mathbf{k}}\right)$
$\Rightarrow \phi$ is a Gaussian random field, with

$$
\langle\phi(t, \mathbf{x})\rangle=0 \&\left\langle\phi^{2}(t, \mathbf{x})\right\rangle \simeq \frac{\rho}{m^{2}}
$$

```
Also }\mp@subsup{\partial}{t}{}\phi~\operatorname{Im}[\alpha]\mathrm{ is
    an independent
Gaussian random field
```


$P(\alpha)$ Experimentally Testable

Key assumption: Gaussian $P(\alpha)$

May not be true, e.g. coherent state or Bose-Einstein
Condensate

Could resolve with experiment (post discovery of DM):
look for non-Gaussianities in the fluctuations of ϕ

Part II

The Coherence Time

Autocorrelation function

Having understood $\left\langle\phi^{n}(t, \mathbf{x})\right\rangle$, natural to next consider

$$
\Gamma(\tau, \mathbf{d})=\langle\phi(t, \mathbf{x}) \phi(t+\tau, \mathbf{x}+\mathbf{d})\rangle
$$

Autocorrelation function

Having understood $\left\langle\phi^{n}(t, \mathbf{x})\right\rangle$, natural to next consider

$$
\Gamma(\tau, \mathbf{d})=\langle\phi(t, \mathbf{x}) \phi(t+\tau, \mathbf{x}+\mathbf{d})\rangle
$$

$\Rightarrow\langle\mathcal{O}\rangle$ independent of (t, \mathbf{x})

If stationary* can derive (with $\mathbf{d}=0$)

$$
\Gamma(\tau)=\frac{\rho}{\bar{\omega}} \int d \omega \frac{p(\omega)}{\omega} \cos (\omega \tau)
$$

Autocorrelation function

Having understood $\left\langle\phi^{n}(t, \mathbf{x})\right\rangle$, natural to next consider

$$
\Gamma(\tau, \mathbf{d})=\langle\phi(t, \mathbf{x}) \phi(t+\tau, \mathbf{x}+\mathbf{d})\rangle
$$

If stationary* can derive (with $\mathbf{d}=0$)

$$
\Gamma(\tau)=\frac{\rho}{\bar{\omega}} \int d \omega \frac{p(\omega)}{\omega} \cos (\omega \tau)
$$

For $\mathrm{DM}, \omega \simeq m+\frac{1}{2} m v^{2}$, with v set by e.g.

$$
f(\mathbf{v})=\frac{1}{\pi^{3 / 2} v_{0}^{3}} e^{-\left(\mathbf{v}+\mathbf{v}_{\odot}\right)^{2} / v_{0}^{2}}
$$

Autocorrelation function

$$
\Gamma(\tau)=\frac{\rho}{\bar{\omega}} \int d \omega \frac{p(\omega)}{\omega} \cos (\omega \tau)
$$

Autocorrelation function

$$
\Gamma(\tau)=\frac{\rho}{\bar{\omega}} \int d \omega \frac{p(\omega)}{\omega} \cos (\omega \tau)
$$

Coherence Time

$$
\text { Define: } \tau_{c}=\int_{-\infty}^{\infty} d \tau\left|\frac{\Gamma(\tau)}{\Gamma(0)}\right|^{2}
$$

Coherence Time

$$
\text { Define: } \tau_{c}=\int_{-\infty}^{\infty} d \tau\left|\frac{\Gamma(\tau)}{\Gamma(0)}\right|^{2}
$$

Example 1: $\Gamma(\tau)=A e^{-|\tau| \bar{\tau}_{c}}$, find $\tau_{c}=\bar{\tau}_{c}$

Coherence Time

$$
\text { Define: } \tau_{c}=\int_{-\infty}^{\infty} d \tau\left|\frac{\Gamma(\tau)}{\Gamma(0)}\right|^{2}
$$

Example 1: $\Gamma(\tau)=A e^{-|\tau| / \bar{\tau}_{c}}$, find $\tau_{c}=\bar{\tau}_{c}$
Example 2: DM with the SHM

$$
\tau_{c}=\frac{\sqrt{2 \pi} \operatorname{Erf}\left[\sqrt{2} v_{\odot} / v_{0}\right]}{m v_{0} v_{\odot}}\left(1+\frac{3 v_{0}^{2}}{4}-\frac{v_{0} v_{\odot} e^{-2 v_{\odot}^{2} / v_{0}^{2}}}{\sqrt{2 \pi} \operatorname{Erf}\left[\sqrt{2} v_{\odot} / v_{0}\right]}+\mathcal{O}\left(v^{4}\right)\right)
$$

Coherence Time

$$
\text { Define: } \tau_{c}=\int_{-\infty}^{\infty} d \tau\left|\frac{\Gamma(\tau)}{\Gamma(0)}\right|^{2}
$$

Example 1: $\Gamma(\tau)=A e^{-|\tau| / \bar{\tau}_{c}}$, find $\tau_{c}=\bar{\tau}_{c}$
Example 2: DM with the SHM

$$
\tau_{c}=\frac{\sqrt{2 \pi} \operatorname{Erf}\left[\sqrt{2} v_{\odot} / v_{0}\right]}{m v_{0} v_{\odot}}(1+\underbrace{\frac{3 v_{0}^{2}}{4}-\frac{v_{0} v_{\odot} e^{-2 v_{\odot}^{2} / v_{0}^{2}}}{\sqrt{2 \pi} \operatorname{Erf}\left[\sqrt{2} v_{\odot} / v_{0}\right]}+\mathcal{O}\left(v^{4}\right)}_{\text {irrelevant }})
$$

But it is a precisely defined concept

Coherence Time

$$
\text { Define: } \tau_{c}=\int_{-\infty}^{\infty} d \tau\left|\frac{\Gamma(\tau)}{\Gamma(0)}\right|^{2}
$$

Example 1: $\Gamma(\tau)=A e^{-|\tau| / \bar{\tau}_{c}}$, find $\tau_{c}=\bar{\tau}_{c}$
Example 2: DM with the SHM

$$
\begin{aligned}
\tau_{c} & =\frac{\sqrt{2 \pi} \operatorname{Erf}\left[\sqrt{2} v_{\odot} / v_{0}\right]}{m v_{0} v_{\odot}}(1+\underbrace{\frac{3 v_{0}^{2}}{4}-\frac{v_{0} v_{\odot} e^{-2 v_{\odot}^{2} / v_{0}^{2}}}{\sqrt{2 \pi} \operatorname{Erf}\left[\sqrt{2} v_{\odot} / v_{0}\right]}+\mathcal{O}\left(v^{4}\right)}_{\text {irrelevant }}) \\
& \simeq 2.8 \mathrm{~s}\left(\frac{1 \mathrm{neV}}{m}\right) \quad
\end{aligned}
$$

Frequency Domain

By the Wiener-Khinchin theorem,

$$
S(\omega)=\int_{-\infty}^{\infty} d \tau \Gamma(\tau) e^{i \omega \tau}
$$

Frequency Domain

By the Wiener-Khinchin theorem,

$$
S(\omega)=\int_{-\infty}^{\infty} d \tau \Gamma(\tau) e^{i \omega \tau}
$$

Can use to show that,

$$
\Gamma(\tau)=\frac{\rho}{\bar{\omega}} \int d \omega \frac{p(\omega)}{\omega} \cos (\omega \tau) \Rightarrow S(\omega)=\frac{\pi \rho}{\bar{\omega}} \frac{p(\omega)}{\omega}
$$

Frequency Domain

By the Wiener-Khinchin theorem,

$$
S(\omega)=\int_{-\infty}^{\infty} d \tau \Gamma(\tau) e^{i \omega \tau}
$$

Can use to show that,

$$
\Gamma(\tau)=\frac{\rho}{\bar{\omega}} \int d \omega \frac{p(\omega)}{\omega} \cos (\omega \tau) \Rightarrow S(\omega)=\frac{\pi \rho}{\bar{\omega}} \frac{p(\omega)}{\omega}
$$

Cf. [Dror, Murayama, NLR 2021]
Further, width of $S(\omega)$ is $\Delta \omega=1 / \tau_{c}$

> Intuition: τ_{c} measures how long $\phi(t)=\phi_{0} \cos (m t)$ is a good approximation See also [Dror, Gori, Leedom, NLR 2023]

Part III

Wave-Particle Boundary

Wave-Particle Boundary

So far $\left[\hat{a}, \hat{a}^{\dagger}\right] \simeq 0$ (justify by $N \gg 1$)

Now $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$, but for simplicity take a single mode

$$
(\omega=m)
$$

Question: what is the energy in a box of volume V_{c} ?

$$
L \sim V_{c}^{1 / 3}
$$

> Similar result holds for calculation in a finite physical volume

Wave-Particle Boundary

Rewrite Gaussian $\hat{\rho}$ in the number basis

$$
\begin{aligned}
\hat{\rho} & =\int d^{2} \alpha \frac{e^{-|\alpha|^{2} /\langle N\rangle}}{\pi\langle N\rangle}|\alpha\rangle\langle\alpha| \\
& =\frac{1}{1+\langle N\rangle} \sum_{k=0}^{\infty}\left(\frac{\langle N\rangle}{1+\langle N\rangle}\right)^{k}|k\rangle\langle k|
\end{aligned}
$$

Wave-Particle Boundary

Rewrite Gaussian $\hat{\rho}$ in the number basis

$$
\begin{aligned}
\hat{\rho} & =\int d^{2} \alpha \frac{e^{-|\alpha|^{2} /\langle N\rangle}}{\pi\langle N\rangle}|\alpha\rangle\langle\alpha| \\
& =\frac{1}{1+\langle N\rangle} \sum_{k=0}^{\infty}\left(\frac{\langle N\rangle}{1+\langle N\rangle}\right)^{k}|k\rangle\langle k|
\end{aligned}
$$

Probability of seeing k quanta in V_{c} is

$$
p(k)=\frac{1}{1+\langle N\rangle}\left(\frac{\langle N\rangle}{1+\langle N\rangle}\right)^{k}
$$

For a single mode: $E=m \times k$, so we can just study k

Wave-Particle Boundary

The mean and standard deviation of k :

$$
\begin{gathered}
\mu_{k}=\langle k\rangle=\langle N\rangle \\
\sigma_{k}^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle N\rangle(1+\langle N\rangle)
\end{gathered}
$$

Wave-Particle Boundary

The mean and standard deviation of k :

$$
\begin{gathered}
\mu_{k}=\langle k\rangle=\langle N\rangle \\
\sigma_{k}^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle N\rangle(1+\langle N\rangle)
\end{gathered}
$$

Wave-Particle Boundary

The mean and standard deviation of k :

$$
\begin{gathered}
\mu_{k}=\langle k\rangle=\langle N\rangle \\
\sigma_{k}^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle N\rangle(1+\langle N\rangle)
\end{gathered}
$$

For $\langle N\rangle \gg 1, \sigma_{k}^{2}=\mu_{k}^{2}$
Exponentially distributed

Wave-Particle Boundary

The mean and standard deviation of k :

$$
\begin{gathered}
\mu_{k}=\langle k\rangle=\langle N\rangle \\
\sigma_{k}^{2}=\left\langle k^{2}\right\rangle-\langle k\rangle^{2}=\langle N\rangle(1+\langle N\rangle)
\end{gathered}
$$

For $\langle N\rangle \sim 1$ neither Poisson nor exponential

Conclusion

The quantum approach opens a path to a rigorous description of wave dark matter

Open questions:

- Determine the exact $P(\alpha)$ of DM
- Interface with experiment (quantum measurement theory)
- Resolve the distribution of polarizations for dark photons
- ...

