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Motivation

Establish a more rigorous description of 

wave DM and the wave-particle boundary
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2. A rigorous definition of the coherence time

3. A single calculation across the wave-particle boundary

3

Outline

1. What is the density matrix of dark matter?



Part I

The Density Matrix of 
Dark Matter
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The Density Matrix of Dark Matter
Recall, coherent states defined by  are complete 

(but not orthogonal), so can decompose density matrix as 

 

̂a |α⟩ = α |α⟩

̂ρ = ∫ d2α P(α) |α⟩⟨α | Glauber-Sudarshan  
[Glauber 1963], 

[Sudarshan 1963]

P

See also [Kim, Lenocci 2022]
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Recall, coherent states defined by  are complete 
(but not orthogonal), so can decompose density matrix as 

 

Properties of : 

 

 

̂a |α⟩ = α |α⟩

̂ρ = ∫ d2α P(α) |α⟩⟨α |

P(α)

̂ρ† = ̂ρ ⇒ P(α) ∈ ℝ

Tr[ ̂ρ] = 1 ⇒ ∫ d2α P(α) = 1

Glauber-Sudarshan  
[Glauber 1963], 

[Sudarshan 1963]

P

See also [Kim, Lenocci 2022]

The Density Matrix of Dark Matter



Nick Rodd  |  A Quantum Description of Wave DM 7

Recall, coherent states defined by  are complete 
(but not orthogonal), so can decompose density matrix as 

 

Properties of : 

 

 

NB:  is not a probability distribution,  allowed

̂a |α⟩ = α |α⟩

̂ρ = ∫ d2α P(α) |α⟩⟨α |

P(α)

̂ρ† = ̂ρ ⇒ P(α) ∈ ℝ

Tr[ ̂ρ] = 1 ⇒ ∫ d2α P(α) = 1

P(α) P(α) < 0

Glauber-Sudarshan  
[Glauber 1963], 

[Sudarshan 1963]

P

See also [Kim, Lenocci 2022]

The Density Matrix of Dark Matter
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[Glauber 1963]:  obeys the central limit theorem 
So generally expect (e.g. thermal radiation) that 

 

P(α)

̂ρk = ∫ d2αk ( 1
π⟨Nk⟩

exp [−
|αk |2

⟨Nk⟩ ])
P(αk)

|αk⟩⟨αk | Cf. Coherent state: 
P(α) = δ(2)(α − β)

See also [Kim, Lenocci 2022]

The Density Matrix of Dark Matter

: mode of the fieldk
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[Glauber 1963]:  obeys the central limit theorem 
So generally expect (e.g. thermal radiation) that 

 

 is the mean occupation of the mode, specified by 

P(α)

̂ρk = ∫ d2αk ( 1
π⟨Nk⟩

exp [−
|αk |2

⟨Nk⟩ ])
P(αk)

|αk⟩⟨αk |

⟨Nk⟩

⟨Nk⟩ =
density of particles

density of states
≃

(2πℏ)3

gs
n̄ p(k)

The Density Matrix of Dark Matter
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[Glauber 1963]:  obeys the central limit theorem 
So generally expect (e.g. thermal radiation) that 

 

 is the mean occupation of the mode, specified by 

P(α)

̂ρk = ∫ d2αk ( 1
π⟨Nk⟩

exp [−
|αk |2

⟨Nk⟩ ])
P(αk)

|αk⟩⟨αk |

⟨Nk⟩

⟨Nk⟩ =
density of particles

density of states
≃

(2πℏ)3

gs
n̄ p(k)

Axion:   
Dark photon: 

gs = 1
gs = 3

e.g. Standard 
Halo Model

# density

 for local DM≃

The Density Matrix of Dark Matter
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[Glauber 1963]:  obeys the central limit theorem 
So generally expect (e.g. thermal radiation) that 

 

P(α)

̂ρk = ∫ d2αk ( 1
π⟨Nk⟩

exp [−
|αk |2

⟨Nk⟩ ])
P(αk)

|αk⟩⟨αk |

⟨Nk⟩ ≃ n̄ × Vcoherence ≃ # of indistinguishable particles

Defines wave-particle boundary (given  etc) 
Axions:  

Dark photons: 

ρDM
m ≃ 14.4 eV

m ≃ 11.0 eV

The Density Matrix of Dark Matter
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Let’s determine the implications for a scalar field 

 ̂ϕ(t, x) = ∑
k

1
2Vωk

( ̂ake−ik⋅x + ̂a†
keik⋅x)

Scalar Field Statistics
DENSITY MATRIX
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Let’s determine the implications for a scalar field 

 

As usual, , but if , set  

̂ϕ(t, x) = ∑
k

1
2Vωk

( ̂ake−ik⋅x + ̂a†
keik⋅x)

⟨�̂�⟩ = Tr[ ̂ρ �̂�] [ ̂a, ̂a†] = 0 ̂a(†)
k = α (*)

k

Scalar Field Statistics
DENSITY MATRIX

 
in part III

[ ̂a, ̂a†] ≠ 0
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Let’s determine the implications for a scalar field 

 

As usual, , but if , set  

 

with  drawn from a Gaussian distribution,  

̂ϕ(t, x) = ∑
k

1
2Vωk

( ̂ake−ik⋅x + ̂a†
keik⋅x)

⟨�̂�⟩ = Tr[ ̂ρ �̂�] [ ̂a, ̂a†] = 0 ̂a(†)
k = α (*)

k

⇒ ϕ(t, x) = ∑
k

2
Vωk

Re [αke−ik⋅x]

αk P(αk)

Scalar Field Statistics
DENSITY MATRIX

 
in part III

[ ̂a, ̂a†] ≠ 0
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Let’s determine the implications for a scalar field 

 

As usual, , but if , set  

 

with  drawn from a Gaussian distribution,  

̂ϕ(t, x) = ∑
k

1
2Vωk

( ̂ake−ik⋅x + ̂a†
keik⋅x)

⟨�̂�⟩ = Tr[ ̂ρ �̂�] [ ̂a, ̂a†] = 0 ̂a(†)
k = α (*)

k

⇒ ϕ(t, x) = ∑
k

2
Vωk

Re [αke−ik⋅x] ∼ cos(mt)

αk P(αk)

Scalar Field Statistics
DENSITY MATRIX

 
in part III

[ ̂a, ̂a†] ≠ 0

For a single mode
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Let’s determine the implications for a scalar field 

 

As usual, , but if , set  

 

with  drawn from a Gaussian distribution,  

  is a Gaussian random field, with 

 & 

̂ϕ(t, x) = ∑
k

1
2Vωk

( ̂ake−ik⋅x + ̂a†
keik⋅x)

⟨�̂�⟩ = Tr[ ̂ρ �̂�] [ ̂a, ̂a†] = 0 ̂a(†)
k = α (*)

k

⇒ ϕ(t, x) = ∑
k

2
Vωk

Re [αke−ik⋅x] ∼ cos(mt)

αk P(αk)

⇒ ϕ

⟨ϕ(t, x)⟩ = 0 ⟨ϕ2(t, x)⟩ ≃
ρ

m2

Scalar Field Statistics
DENSITY MATRIX

 
in part III

[ ̂a, ̂a†] ≠ 0

Also  is 
an independent 

Gaussian random field

∂tϕ ∼ Im[α]

For a single mode
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 Experimentally TestableP(α)
DENSITY MATRIX

Key assumption: Gaussian  

May not be true, e.g. coherent state or Bose-Einstein 
Condensate 

Could resolve with experiment (post discovery of DM): 
look for non-Gaussianities in the fluctuations of 

P(α)

ϕ

BEC: e.g. [Sikivie, Yang 2009] 
[Erken, Sikivie, Tam, Yang 2012]



Part II

The Coherence Time
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Autocorrelation function
COHERENCE TIME

Having understood , natural to next consider ⟨ϕn(t, x)⟩

Γ(τ, d) = ⟨ϕ(t, x)ϕ(t + τ, x + d)⟩ Assume stationary/homogeneous 
  independent of ⇒ ⟨𝒪⟩ (t, x)

Intuition: how much does knowledge of the 
field at one point tell you about it at another?
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Autocorrelation function
COHERENCE TIME

Having understood , natural to next consider 

 

If stationary* can derive (with ) 

⟨ϕn(t, x)⟩

Γ(τ, d) = ⟨ϕ(t, x)ϕ(t + τ, x + d)⟩

d = 0

Γ(τ) =
ρ
ω̄ ∫ dω

p(ω)
ω

cos(ωτ)

Assume stationary/homogeneous 
  independent of ⇒ ⟨𝒪⟩ (t, x)

*Need a slightly stronger 
version to show this 

Also have results for  
Cf. [Derevianko 2018]

d ≠ 0
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Autocorrelation function
COHERENCE TIME

Having understood , natural to next consider 

 

If stationary* can derive (with ) 

 

For DM, , with  set by e.g. 

⟨ϕn(t, x)⟩

Γ(τ, d) = ⟨ϕ(t, x)ϕ(t + τ, x + d)⟩

d = 0

Γ(τ) =
ρ
ω̄ ∫ dω

p(ω)
ω

cos(ωτ)

ω ≃ m+ 1
2 mv2 v

f(v) =
1

π3/2v3
0

e−(v+v⊙)2/v2
0

Assume stationary/homogeneous 
  independent of ⇒ ⟨𝒪⟩ (t, x)

Standard Halo 
Model

*Need a slightly stronger 
version to show this 

Also have results for  
Cf. [Derevianko 2018]

d ≠ 0



Nick Rodd  |  A Quantum Description of Wave DM 22

Autocorrelation function
COHERENCE TIME

Γ(τ) =
ρ
ω̄ ∫ dω

p(ω)
ω

cos(ωτ)

0 50 100 150 200

mø

°1.0

°0.5

0.0

0.5

1.0

°
(m

ø
)/

°
(0

)
SHM, v0 = vØ = 0.2

In reality, 
v0 ∼ v⊙ ∼ 10−3
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Autocorrelation function
COHERENCE TIME

Γ(τ) =
ρ
ω̄ ∫ dω

p(ω)
ω

cos(ωτ)

0 50 100 150 200

mø

°1.0

°0.5

0.0

0.5

1.0

°
(m

ø
)/

°
(0

) e°ø/øc

SHM, v0 = vØ = 0.2

exponential 
decay time of 
τc =

Γ(τ)
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Coherence Time

Define:  τc = ∫
∞

−∞
dτ

Γ(τ)
Γ(0)

2
Common def. in quantum optics, 

e.g. [Mandel & Wolf, “Optical 
Coherence and Quantum Optics”] 

Cf. [Masia-Roig+ 2023]
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Coherence Time

Define:  

Example 1: , find  

τc = ∫
∞

−∞
dτ

Γ(τ)
Γ(0)

2

Γ(τ) = Ae−|τ|/τ̄c τc = τ̄c

Common def. in quantum optics, 
e.g. [Mandel & Wolf, “Optical 

Coherence and Quantum Optics”] 
Cf. [Masia-Roig+ 2023]
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Coherence Time

Define:  

Example 1: , find  

Example 2: DM with the SHM 

τc = ∫
∞

−∞
dτ

Γ(τ)
Γ(0)

2

Γ(τ) = Ae−|τ|/τ̄c τc = τ̄c

τc =
2πErf [ 2v⊙/v0]

mv0v⊙ (1 +
3v2

0

4
−

v0v⊙e−2v2
⊙/v2

0

2πErf [ 2v⊙/v0]
+ 𝒪(v4)

irrelevant

)

Common def. in quantum optics, 
e.g. [Mandel & Wolf, “Optical 

Coherence and Quantum Optics”] 
Cf. [Masia-Roig+ 2023]
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Coherence Time

Define:  

Example 1: , find  

Example 2: DM with the SHM 

 

τc = ∫
∞

−∞
dτ

Γ(τ)
Γ(0)

2

Γ(τ) = Ae−|τ|/τ̄c τc = τ̄c

τc =
2πErf [ 2v⊙/v0]

mv0v⊙ (1 +
3v2

0

4
−

v0v⊙e−2v2
⊙/v2

0

2πErf [ 2v⊙/v0]
+ 𝒪(v4)

irrelevant

)

But it is a precisely defined concept

Common def. in quantum optics, 
e.g. [Mandel & Wolf, “Optical 

Coherence and Quantum Optics”] 
Cf. [Masia-Roig+ 2023]
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Coherence Time

Define:  

Example 1: , find  

Example 2: DM with the SHM 

 

τc = ∫
∞

−∞
dτ

Γ(τ)
Γ(0)

2

Γ(τ) = Ae−|τ|/τ̄c τc = τ̄c

τc =
2πErf [ 2v⊙/v0]

mv0v⊙ (1 +
3v2

0

4
−

v0v⊙e−2v2
⊙/v2

0

2πErf [ 2v⊙/v0]
+ 𝒪(v4)

irrelevant

)

τc ≃ 2.8 s ( 1 neV
m ) But it is a precisely defined concept

Common def. in quantum optics, 
e.g. [Mandel & Wolf, “Optical 

Coherence and Quantum Optics”] 
Cf. [Masia-Roig+ 2023]
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Frequency Domain
COHERENCE TIME

By the Wiener-Khinchin theorem, 

 S(ω) = ∫
∞

−∞
dτ Γ(τ)eiωτ
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Frequency Domain
COHERENCE TIME

By the Wiener-Khinchin theorem, 

 

Can use to show that, 

 

S(ω) = ∫
∞

−∞
dτ Γ(τ)eiωτ

Γ(τ) =
ρ
ω̄ ∫ dω

p(ω)
ω

cos(ωτ) ⇒ S(ω) =
πρ
ω̄

p(ω)
ω

Cf. [Dror, Murayama, NLR 2021]
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Frequency Domain
COHERENCE TIME

By the Wiener-Khinchin theorem, 

 

Can use to show that, 

 

Further, width of  is 

S(ω) = ∫
∞

−∞
dτ Γ(τ)eiωτ

Γ(τ) =
ρ
ω̄ ∫ dω

p(ω)
ω

cos(ωτ) ⇒ S(ω) =
πρ
ω̄

p(ω)
ω

S(ω) Δω = 1/τc

Intuition:  measures how long 
 is a good approximation 

See also [Dror, Gori, Leedom, NLR 2023]

τc
ϕ(t) = ϕ0 cos(mt)

Cf. [Dror, Murayama, NLR 2021]



Part III

Wave-Particle Boundary
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Wave-Particle Boundary

So far  (justify by ) 

Now , but for simplicity take a single mode 
( ) 

Question: what is the energy in a box of volume ?

[ ̂a, ̂a†] ≃ 0 N ≫ 1

[ ̂a, ̂a†] = 1
ω = m

Vc

L ∼ V1/3
c

Similar result holds for 
calculation in a finite 

physical volume



Nick Rodd  |  A Quantum Description of Wave DM 34

Wave-Particle Boundary
Rewrite Gaussian  in the number basis 

 

                   

̂ρ

̂ρ = ∫ d2α
e−|α|2/⟨N⟩

π⟨N⟩
|α⟩⟨α |

=
1

1 + ⟨N⟩

∞

∑
k=0

( ⟨N⟩
1 + ⟨N⟩ )

k

|k⟩⟨k |

Here , not 
wavevector!

k ∈ ℕ

Can use to show 
Tr[ ̂ρ2] = (1 + 2⟨N⟩)−1
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Wave-Particle Boundary
Rewrite Gaussian  in the number basis 

 

                   

Probability of seeing  quanta in  is 

 

For a single mode: , so we can just study 

̂ρ

̂ρ = ∫ d2α
e−|α|2/⟨N⟩

π⟨N⟩
|α⟩⟨α |

=
1

1 + ⟨N⟩

∞

∑
k=0

( ⟨N⟩
1 + ⟨N⟩ )

k

|k⟩⟨k |

k Vc

p(k) =
1

1 + ⟨N⟩ ( ⟨N⟩
1 + ⟨N⟩ )

k

E = m × k k

Here , not 
wavevector!

k ∈ ℕ

Can use to show 
Tr[ ̂ρ2] = (1 + 2⟨N⟩)−1
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Wave-Particle Boundary
The mean and standard deviation of : 

 
k

μk = ⟨k⟩ = ⟨N⟩
σ2

k = ⟨k2⟩ − ⟨k⟩2 = ⟨N⟩(1 + ⟨N⟩)
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Wave-Particle Boundary
The mean and standard deviation of : 

 
k

μk = ⟨k⟩ = ⟨N⟩
σ2

k = ⟨k2⟩ − ⟨k⟩2 = ⟨N⟩(1 + ⟨N⟩)

For ,  
Poisson distributed

⟨N⟩ ≪ 1 σ2
k = μk

Holds for all higher moments
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Wave-Particle Boundary
The mean and standard deviation of : 

 
k

μk = ⟨k⟩ = ⟨N⟩
σ2

k = ⟨k2⟩ − ⟨k⟩2 = ⟨N⟩(1 + ⟨N⟩)

For ,  
Poisson distributed

⟨N⟩ ≪ 1 σ2
k = μkFor ,  

Exponentially distributed
⟨N⟩ ≫ 1 σ2

k = μ2
k

Holds for all higher moments
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Wave-Particle Boundary
The mean and standard deviation of : 

 
k

μk = ⟨k⟩ = ⟨N⟩
σ2

k = ⟨k2⟩ − ⟨k⟩2 = ⟨N⟩(1 + ⟨N⟩)

For  neither Poisson nor exponential⟨N⟩ ∼ 1



Conclusion

The quantum approach opens a path to a  
rigorous description of wave dark matter 

Open questions: 
Determine the exact  of DM 
Interface with experiment (quantum measurement theory) 
Resolve the distribution of polarizations for dark photons 
…

P(α)
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