Evidence of caustic rings and their implications on axion searches

Sankha S. Chakrabarty

Harvard Medical School

Axions 2024

Outline of the talk

- What is a caustic?
- How does a caustic ring form?
- Effects of a caustic ring on the stars and interstellar gas
- Evidence of the caustic rings
- Relevance in axion searches

What is a caustic?

- Derived from the Greek word for 'burning'
- Caustics are regions of physical space where number density is infinite in the limit of zero velocity dispersion.
- Commonly seen in the propagation of light

- Caustic occurs in a flow of radiation or matter under two conditions.
- 1) The flow must be collisionless
- 2) The flow must have *small initial velocity dispersion*

Credit: Heiner Otterstedt, James Gurney, Brocken Inaglory, The Optical Society of America

Caustics in cold and collisionless dark matter

• **Cold:** very small primordial velocity dispersion (δv)

$$\delta v \approx 10^{-12} c \left(\frac{GeV}{m_W}\right)^{1/2}$$
 (WIMPs)
 $\approx 10^{-17} c \left(\frac{\mu eV}{m_a}\right)$ (decoupled QCD axions)
 $\approx 10^{-4} c \left(\frac{eV}{m_v}\right)$ (sterile neutrinos)

• **Collisionless:** *interact only via gravitational force.*

As the cold dark matter (CDM) particles *satisfy the two conditions*, caustics are expected in the distribution of dark matter in galactic halo.

How does a caustic ring form?

- In a flow of dark matter, there is an outer turn around point and an inner turn around point.
- Inner caustic occurs when particles with maximum angular momentum are closest to the galactic center.
- *n*th inner caustic appears in the flow of particles experiencing *n*th inner turnaround in their history.
- Outer caustic occurs when the particles turn around before falling back in. We do not consider the effects of outer caustics while studying the stars and gas in the disk.

Infall of a turnaround sphere with rigid rotation about the vertical axis:

Natarajan and Sikivie, Phys. Rev. D73 (2006), astro-ph/0510743

Caustic ring : Closed tube with tricusp cross section

 $(\nabla \times v \neq 0)$

Natarajan and Sikivie: Phys.Rev.D73(2006) <u>astro-ph/0510743</u> and Duffy and Sikivie, Phys Rev D78(2008) arXiv:0805.4556

Self-similarity

- Evolution of a flow is self-similar if the flow remains identical to itself except for an overall rescaling of its density, size and velocity.
- Evolution of dark matter halo is self-similar because there is no special time in the history of a galactic halo.
- In self-similar model, radii *a(t)* of inner caustic rings increase on cosmological time scale.

 $a(t) \propto t^{4/3}$ (t = age of the universe)

Self-similarity of Koch curve. Courtesy: Wikipedia

• Current radii of the rings:

$$a_n\approx \frac{40\;kpc}{n}\;\;,n=1,2,3,\ldots$$

Fillmore and Goldreich (1984), Sikivie (1999), Duffy and Sikivie (2008)

Current radii of the rings:

 $a_n \approx \frac{40 \ kpc}{n}$, n = 1, 2, 3, ...

Exact circular : $\rho_0 = 8 \text{ kpc}$

The star is initially attracted to the *tricusp* then moves with and oscillates about it for approximately 1 Gyr before coming back to its initial orbit. Perturbed circular : $v_{\rho}^{max} = v_z^{max} = 5 \text{ km/s}$

Chakrabarty and Sikivie, Phys. Rev. D98 (2018) arXiv:1808:00027

The star is initially attracted to the *tricusp* then moves with and oscillates about it for approximately 1 Gyr before coming back to its initial orbit.

- In the first approximation, the total relative over-density is the sum of relative overdensities from radial and vertical dynamics.
- Relative overdensities of 120, 45, 30 and 15% near the 2nd, 3rd, 4th and 5th caustic rings.
- Monoceros ring of stars at 20 kpc (Newberg et al 2002, Yanny et al 2003, Ibata et al 2003)
- Ring of stars at 13.6 kpc reported by Binney and Dehnen 1997
- Relative overdensities near 4th and 5th caustic rings may be observable in GAIA.

Effects on interstellar gas

• Isothermal distribution:

Potential:
$$\Phi_g(\rho, z) = \sigma_g^2 \ln \left[\cosh^2 \left(\frac{z}{2z_g} \right) \right]$$

Density:
$$d_g(\rho, z) = d_g^0 \operatorname{sech}^2\left(\frac{z}{2z_g}\right)$$

- In the solar neighborhood: $\sigma_g \approx 5 \text{ km/s}$, $z_g = 65 \text{ pc}$, $d_g^0 \approx 0.05 \text{ M}_{\odot}/\text{pc}^3$
- In the presence of a caustic:

$$\nabla^2 \Phi(X, Z) = 4\pi G d_g(X, Z)$$
$$d_g(X, Z) = d_g(X_0, Z_0) \exp\left(-\frac{\Phi(X, Z) + \Phi_c(X, Z)}{\sigma_g^2}\right)$$

(Assuming thermal equilibrium)

Gravitational potential and density of interstellar gas near the 5th caustic ring

Evidence of caustic rings in IRAS and GAIA sky maps

The Milky Way galactic plane from IRAS at 12 μm wavelength.

Sikivie, Phys.Lett.B567 (2003) astro-ph/0109296, Banik et al 2017 arXiv:1701.04573

The Milky Way galactic plane from GAIA skymap

Chakrabarty, Han, Gonzalez, Sikivie, Phys. Dark Univ. 33 (2021), arXiv:2007.10509

Similar triangular features in the dust map

Green, Schlafly, Zucker, Speagle, Finkbeiner: arXiv:1905.02734 Chakrabarty, Han, Gonzalez, Sikivie, Phys. Dark Univ. 33 (2021), <u>arXiv:2007.10509</u>

Similar triangular features in the dust map

Green, Schlafly, Zucker, Speagle, Finkbeiner: arXiv:1905.02734 Chakrabarty, Han, Gonzalez, Sikivie, Phys. Dark Univ. 33 (2021), <u>arXiv:2007.10509</u>

Four Cold Flows of Axions

Directions of the four flows are correlated.

Size of the circles are proportional to flow densities.

Chakrabarty, Han, Gonzalez, Sikivie, Phys. Dark Univ. 33 (2021), arXiv:2007.10509

Chakrabarty, Han, Gonzalez, Sikivie, Phys. Dark Univ. 33 (2021), arXiv:2007.10509

24

Frequency modulation

$$hf = mc^{2} + \frac{1}{2}m\left(\vec{v}_{\text{flow}} - \vec{v}_{\text{detector}}(\vec{\lambda}, t)\right)^{2}$$
Flow and detector velocities
in the Galactic rest frame.

$$\frac{hf}{mc^{2}} = 1 + \frac{1}{2c^{2}}\left(\vec{v}_{\text{flow}} - \vec{v}_{\text{detector}}(\vec{\lambda}, t)\right)^{2} \qquad \frac{\delta f}{f}$$

$$\vec{v}_{\text{detector}}(t) = \vec{v}_{\text{LSR}} + \vec{v}_{\odot,\text{LSR}} + \vec{v}_{\oplus,\odot}(t) + \vec{v}_{\oplus\text{rot}}(\vec{\lambda}, t)$$

Annual modulation (for the central values of the Caustic Ring Model parameters)

 δf $\sim 10^{-7}$ max

Non-Virialized Axion Search Sensitive to Doppler Effects in the Milky Way Halo

C.Bartram,^{1,2} T. Braine,¹ R. Cervantes,^{1,3} N. Crisosto,^{1,4,*} N. Du,^{1,5} C. Goodman,¹ M. Guzzetti,^{1,†} C. Hanretty,¹ S. Lee,¹ G. Leum,^{1,6} L. J Rosenberg,¹ G. Rybka,¹ J. Sinnis,¹ D. Zhang,¹ M. H. Awida,³ D. Bowring,³ A. S. Chou,³ M. Hollister,³ S. Knirck,³ A. Sonnenschein,³ W. Wester,³ R. Khatiwada,^{7,3} J. Brodsky,⁵ G. Carosi,⁵ L. D. Duffy,⁸ M. Goryachev,⁹ B. McAllister,⁹ A. Quiskamp,⁹ C. Thomson,⁹ M. E. Tobar,⁹ C. Boutan,¹⁰ M. Jones,¹⁰ B. H. LaRoque,¹⁰ E. Lentz,¹⁰ N.E. Man,^{10,†} N. S. Oblath,¹⁰ M. S. Taubman,¹⁰ J. Yang,¹⁰ John Clarke,¹¹ I. Siddiqi,¹¹ A. Agrawal,¹² A. V. Dixit,¹² J. R. Gleason,¹³ Y. Han,¹³ A. T. Hipp,¹³ S. Jois,¹³ P. Sikivie,¹³ N. S. Sullivan,¹³ D. B. Tanner,¹³ E. J. Daw,¹⁴ M. G. Perry,¹⁴ J. H. Buckley,¹⁵ C. Gaikwad,¹⁵ J. Hoffman,¹⁵ K. W. Murch,¹⁵ and J. Russell¹⁵ (ADMX Collaboration)

arXiv:2311.07748

Doppler shift in radio frequency: may be detected in hi-res search

arXiv:1902.00114

Production and detection of an axion dark matter echo

Axion echo: Microwave beam in the direction of axion flow Ariel Arza and Pierre Sikivie Department of Physics, University of Florida, Gainesville, FL 32611, USA (Dated: September 17, 2019)

arXiv:2108.00195

The axion dark matter echo: a detailed analysis

Ariel Arza¹ and Elisa Todarello²

¹Institute for Theoretical and Mathematical Physics, Lomonosov Moscow State University (ITMP), 119991 Moscow, Russia ²Institut für Astroteilchenphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany