Beyond the standard model particle searches in MicroBooNE IOP Joint APP, HEPP and NP Annual Conference 2024

Luciano Arellano

on behalf of the MicroBooNE collaboration

Apr 10, 2024

The University of Manchester

The MicroBooNE experiment

Latest BSM search results

- Heavy Neutral Leptons (2024)
- Dark Tridents

Other MicroBooNE BSM searches

The MicroBooNE experiment

Latest BSM search results

- Heavy Neutral Leptons (2024)
- Dark Tridents

Other MicroBooNE BSM searches

The MicroBooNE experiment at Fermilab

Liquid argon time projection chamber (LArTPC) neutrino detector $(2.6 \times 2.3 \times 10.4 \text{ m}^3)$. Oldest detector in the Short-baseline Neutrino Program (largest dataset of ν -Ar interactions 2015-2020). On axis w.r.t. the Booster Neutrino Beam, its main goal is to investigate MiniBooNE low-energy excess. Today we will focus on exotic searches using NuMI.

Neutrinos from the Main Injector (NuMI) neutrino beam

NuMI beam gives us valuable directionality information

Neutral mesons decay promptly in the target

13% of beam protons don't interact with the target \rightarrow kaons at the absorber (~100 m from MicroBooNE). IOP 2024: Luciano Arellano - Beyond the standard model particle searches in MicroBooNE

LArTPC – event display

LArTPC: Digital bubble-chamber

3 planes of wires for charge readout + photon detection system

 \rightarrow 3D reconstruction and calorimetry

Phys. Rev. D 103, 052002

The MicroBooNE experiment

Latest BSM search results

- Heavy Neutral Leptons (2024)
- Dark Tridents

Other MicroBooNE BSM searches

Heavy Neutral Leptons (HNL)

HNL results $(N \rightarrow \vee e^+ e^- N \rightarrow \vee \pi^0)$

Our most recently published BSM result arXiv:2312.13945, in review for PRL

Analysis uses a convolutional neural network to identify candidate events

Dark Tridents results

New limits for two benchmark models $M_{\chi}/M_{A'} = 0.6$ and 2.0

11

The MicroBooNE experiment

Latest BSM search results

- Heavy Neutral Leptons (2024)
- Dark Tridents

Other MicroBooNE BSM searches

MeV scale physics

1 cm **blip** E ~ O(0.1-1 MeV)

New reconstruction product: blips LArTPCs can probe new energy range

 $\frac{\text{JINST 17 P11022 (2022)}}{\text{Phys. Rev. D 109, 052007 (2024)}}$

Millicharged particles (coming later this year)

Millicharged particles: feebly interacting long-lived particles with fractional charge

Isolated hits with argon electron in a straight line. Favours low-energy hits.

Higgs Portal Scalars (HPS)

Portal between SM and dark sector via the Higgs

Neutral real singlet scalar boson mixes with Higgs boson with mixing angle θ Dark scalar acquires coupling to SM fermions proportional to $\sin(\theta) \rightarrow \theta$

2022

IOP 2024: Luciano Arellano - Beyond the standard model particle searches in MicroBooNE

2021

MicroBooNE searches:

MicroBooNE HPS results

MicroBooNE first HNL search (2020) (BNB $N \rightarrow \mu^{\pm} \pi^{\mp}$)

- <u>Phys. Rev D 101, 052001</u>
- First search of HNLs in LArTPCs
- Produced at **BNB**
- Novel "late trigger" window
 - HNLs take longer than neutrinos to travel \rightarrow effectively removed neutrino background
- Limits for 260-385 MeV

Late trigger window potential improvement with ns timing

Recent calibration improvements allow MicroBooNE to achieve timing resolution of order 1ns revealing the BNB bunch substructure

Phys. Rev. D 108, 052010 (2023)

MicroBooNE HNL results (2022) (NuMI $N \rightarrow \mu^{\pm} \pi^{\mp}$)

Summary

- MicroBooNE is much more than just a neutrino detector
- LArTPCs can be used to search for diverse topologies and have great performance
- Shown latest results of BSM searches
 - Third iteration of HNL results
 - First search for dark tridents on a LArTPC
- MicroBooNE has a rich BSM search program
- Always something in the works! Stay tuned for...
 - Millicharged particles
 - Heavy QCD axions
 - More Higgs Portal Scalars
 - Next generation of LArTPCs!

MicroBooNE LArTPC technology

Scintillation and ionization signals used to produce bubble-chamber like images of events

 $3~{\rm planes}$ of wires with $3{\rm mm}$ pitch

Array of 32 PMTs for light readout

Excellent mm-scale spatial resolution

Excellent calorimetry and lowenergy reconstruction thresholds

Charge Readout from Wire Planes

HNL 2024 kinematics

FIG. 2. BDT input variables after the preselection for run 3 (RHC) data: (a) shower angle θ_{yz} with respect to the y axis projected on the yz plane, (b) track-fit z momentum fraction, and (c) the total shower energy for data and the background prediction. The signal distributions for $N \rightarrow \nu e^+ e^-$ decays with $m_{\text{HNL}} = 100$ MeV and $N \rightarrow \nu \pi^0$ decays with $m_{\text{HNL}} = 200$ MeV are normalized to $|U_{\mu4}|^2 = 2 \times 10^{-5}$ and $|U_{\mu4}|^2 = 3 \times 10^{-7}$, respectively. The gray band indicates the quadrature sum of all uncertainties on the background expectation.

Phys. Rev. Lett. 132, 041801 (2024)

arXiv:2308.03924 (submitted to JINST)

Neutron oscillates into antineutron and annihilates with nearby neutrons, resulting in a "star" topology (not coming from any beam!)

Uses deep learning methods to select candidate events, achieving $\sim 70\%$ efficiency.

First demonstration of such a search in a LArTPC, serves as proof-of-principle for future LArTPCs

MicroBooNE HPS search (2021)

- <u>Phys. Rev. Lett. 127, 151803</u>
- Produced at **NuMI absorber**, decays to e^+e^-
- First BSM e^+e^- search of any LArTPC

Hadron

absorber

One candidate event, consistent with background expectation
Side view

MicroBooNE

Decay volume

NuMI target

and horns

(not to scale)

IOP 2024: Luciano Arellano - Beyond the standard model particle searches in MicroBooNE

BNB

MiniBooNE low-energy excess (LEE)

MiniBooNE (2002-2019) observed a LEE of electromagnetic events with 4.8σ significance.

As a Cherenkov detector MiniBooNE is unable to distinguish between electrons and photons.

MicroBooNE search for the MiniBooNE low-energy excess

Searches using multiple topologies and reconstruction methods: <u>Phys. Rev. Lett. 128, 241801</u> We found no evidence of a ν_e excess

Photon initiated showers have distinct gap between interaction vertex and start of the shower, electrons do not.

Electron/photon separation in LArTPCs

Phys. Rev. D 104, 052002

Starting segment of photon initiated shower has double the deposited charge $(\gamma \rightarrow e^+e^-)$

3+1 light sterile search

Phys. Rev. Lett. 130, 011801

Full 3+1 search, extended 4x4 PMNS matrix, relevant elements $|U_{e4}|^2$, $|U_{\mu4}|^2$, $|U_{s4}|^2$, oscillation parameters Δm^2_{41} , $\sin^2\theta_{14}$, $\sin^2\theta_{24}$

Data consistent with 3ν hypothesis. Limiting factor is degeneracy on $\nu_{\rm e}$ disappearance and appearance, will be addressed using NuMI beam

30

MicroBooNE data

Numi POT Delivered

POT (10/12/2015-6/30/2020)

