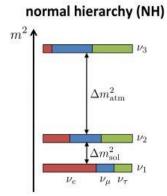
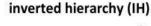
Sensitivity Studies for a Gaseous Argon Near Detector for DUNE

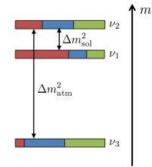
Naseem Khan IOP Joint HEPP, APP and NP Conference 10th April 2024

Overview

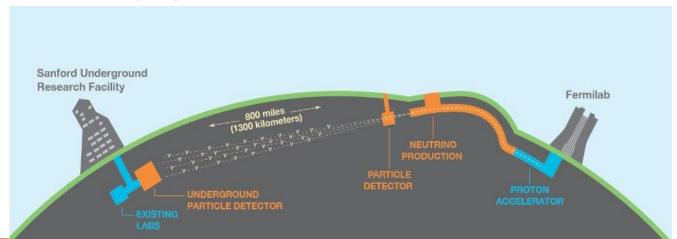
- Neutrino Oscillations and The Deep Underground Neutrino Experiment (DUNE)
- Gaseous Argon Near Detector (ND-GAr)
- Studying the impact of ND-GAr on Oscillation Parameters
- Teststand of an Overpressure Argon Detector (TOAD)

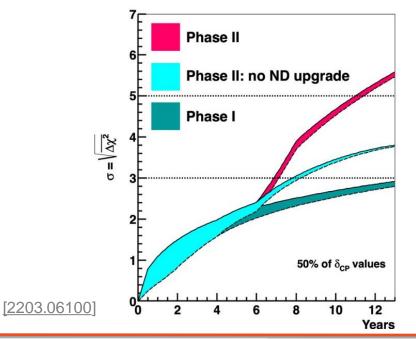

Neutrino Oscillations and DUNE

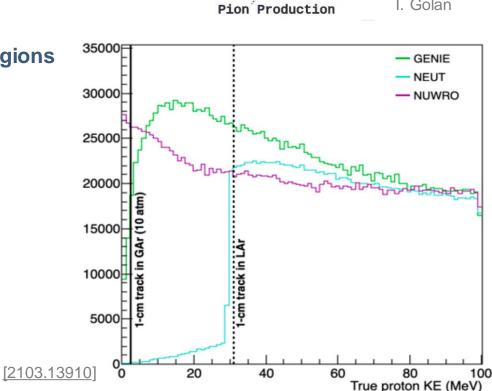

- Flavour oscillations described by **PMNS Matrix** and **mass differences**: θ_{ii} , δ_{CP} , $\Delta m_{ii}^2 = m_i^2 m_i^2$
 - Value of $\delta_{CP} \rightarrow \text{potential CP violation}$ in leptons $\rightarrow \text{matter-antimatter asymmetry}$
 - Mass hierarchy → Normal vs Inverted Ordering

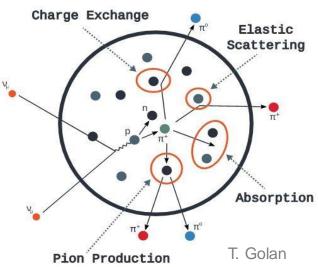

DUNE

- Highest intensity wideband beam in a neutrino oscillation experiment
- Near Detector: ~574 m from neutrino source. Far Detector: ~1300 km downstream
- Physics Program: Precision PMNS Testing, BSM studies, solar, atmospheric & supernovae neutrinos
- Phased Experiment: Phase II will bring upgrades to beam, Near and Far Detectors


Naseem Khan | ND-GAr Sensitivity Studies


JUNO Collaboration/ JGU-Mainz

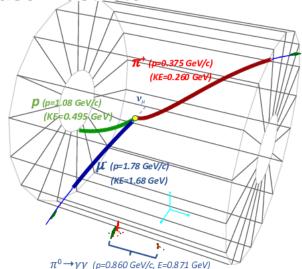



ND-GAr

- Cross section/neutrino interaction model uncertainties need to be constrained
 - **Final State Interactions** not yet fully understood, difficult to reconstruct true initial interaction vertex and therefore true neutrino energy
 - Low energy threshold makes ND-GAr able to detect low energy hadrons (tens of MeV)

Tuning nuclear models with data from more inaccessible energy regions

ND-GAr

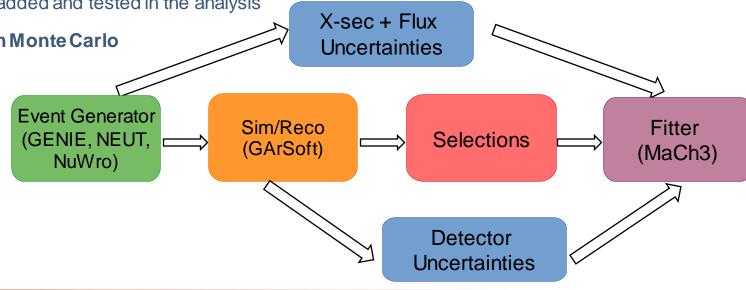

- Liquid Argon used for Near and Far Detector time-projection chambers (ND-LAr and FD)
- ND-GAr: A magnetised high-pressure gas time-projection (HPgTPC) chamber surrounded by an electromagnetic calorimeter (ECAL)

Low density → **lower momentum threshold** for detection → constrain physics of low energy neutrino

interactions

Strongly recommended in P5 report in 2023

DUNE Phase II detector



London

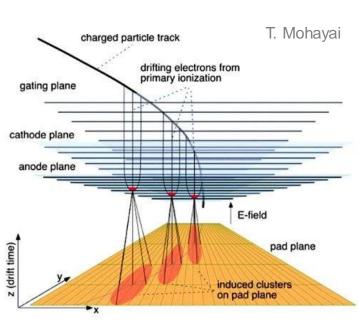
Studying the impact of ND-GAr on Oscillation Parameters

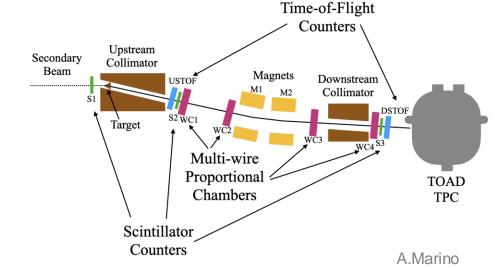
- The **design** of ND-GAr will be **physics driven**:
 - We need to maximise the impact ND-GAr has on the oscillation result
 - Re-optimise the **design requirements** e.g.: Strength of B-field, Optimal Pressure, Resolution
- With a reliable interface from Event Generators to the long baseline (LBL) analysis:
 - Sensitivity to the **different neutrino interaction models** with ND-GAr
 - Any changes to the ND-GAr **design** can be tested and compared
 - The effect of any **new systematics** can also be added and tested in the analysis
 - MaCh3 is a Bayesian fitter using Markov Chain Monte Carlo
 - DUNE currently has ND-LAr + FD implemented in the LBL analysis with MaCh3.
 - I will be adding ND-GAr samples to the fit

TOAD

- Will be useful in quantifying our **detector uncertainties** in the LBL analysis
- Teststand of an Overpressure Argon Detector
 - Full slice test of the HPqTPC component of ND-GAr
 - ~ 1 m³ pressure vessel operating at 5 barA with an Ar-CH₄ gas mixture, using a multi-wire proportional chamber with pad readout
- Utilising the MCenter Tertiary Beam at FNAL low energy hadron beam (~200 MeV)
- led the commissioning effort of TOAD last year at FNAL as run coordinator

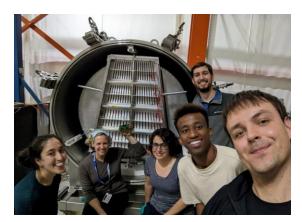
Ready to take beam data from May 2024


Drift Cathode



Field Cage + Terminator

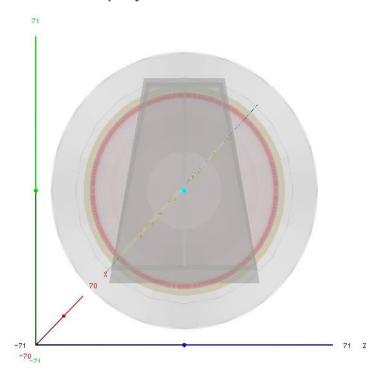
OROC

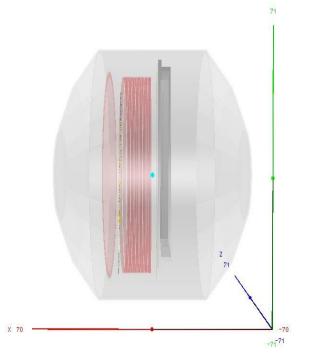


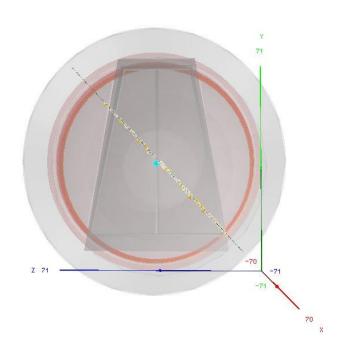
London

TOAD

Naseem Khan | ND-GAr Sensitivity Studies

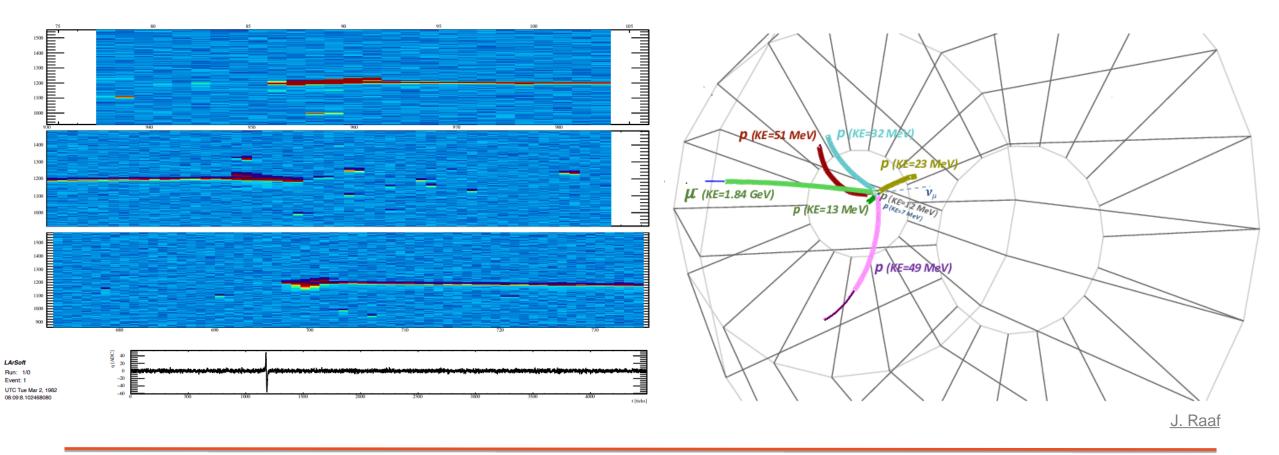






TOAD DAQ and Reco

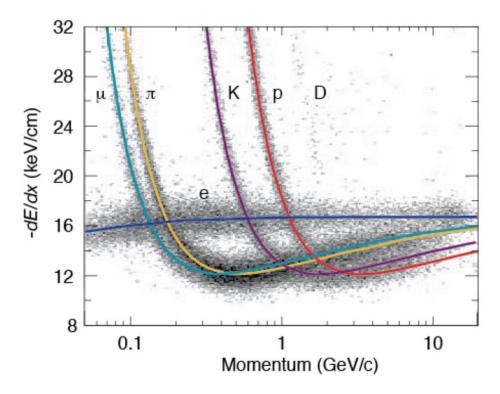
- Integration of the TOAD data readout into the **DUNE-DAQ** framework **first ND prototype** to do so
- Integration of TOAD into the simulation and reconstruction software
- The pipeline from **electronics hardware** to **DAQ** to **reconstruction software** is complete and ready for the beam test
- Event displays with simulated muon tracks passed back through reconstruction


Conclusions

- We are developing design requirements for ND-GAr to deliver the physics needs of DUNE
- A full end-to-end pipeline for the LBL analysis, from Event Generators to Fitter has been completed
- ND-GAr samples have been integrated into the MaCh3 framework and I will carry out sensitivity studies for ND-GAr
- TOAD will be taking data from May 2024 until July 2024, with new readout electronics
- All this work helps in understanding the systematics which DUNE will have to constrain

Back Up

LAr vs GAr


- Same neutrino event, with one muon, 7 low energy protons and 9 neutrons shown in LAr vs GAr
- Longer tracks in GAr so better particle detection and reconstruction

PID in GAr

dE/dx-based particle identification in the TPC of the PEP-4 detector at SLAC [9906063] Used a gas mixture of 80:20 Ar-CH₄, operated at 8.5barA [10.1109/TNS.1983.4332223]

13

The DUNE Near Detector

- 3 Components:
 - Liquid Argon TPC (ND-LAr)
 - The Muon Spectrometer (Phase I)
 ND-GAr (Phase II)
 - System for On Axis Neutrino Detection (SAND)
- ND-LAr:
 - 50-60t fiducial mass liquid Argon TPC
 - Large event sample
 - Liquid argon target like the far detector
 - Charge and optical readout
 - High statistics for neutrino interactions in LAr
 - Flux uncertainties via neutrino-electron elastic scattering and low-nu events as high density
 - QCD free flux measurement
 - Provides precise constraints on flux and event rate

SAND:

- Fixed on-axis position in DUNE ND
- LAr, tracker, ECAL, solenoidal magnet
- Continuous monitoring of the on-axis neutrino flux and measures beam's time stability
- Can compare to interactions in LAr