

Z Mass Measurement at 13 TeV with LHCb

WARWICK THE UNIVERSITY OF WARWICK

Emir Muhammad, Supervised by Mika Vesterinen and Menglin Xu

With thanks to the rest of the team working on EW-Analyses

10 April 2024 / IOP Joint APP, HEPP, and NP Conference

Introduction and Motivation

- m_z an important fundamental parameter in SM
- At tree level:

$$m_{W} = \frac{gv}{2}, m_{z} = \frac{v\sqrt{g^{2} + g'^{2}}}{2}$$
$$cos\theta_{W} = \frac{g}{\sqrt{g^{2} + g'^{2}}} = \frac{m_{W}}{m_{Z}}$$

• *LHCb* has measured m_W , and $\sin^2 \theta_W$..., can we measure m_Z ?

Current Landscape as seen in PDG

<i>VALUE</i> (GeV)		EVTS	DOCUMENT ID		TECN	COMMENT
$\textbf{91.1876} \pm \textbf{0.0021}$	OUR FIT					
91.1852 ± 0.0030		4.57M	¹ ABBIENDI	2001A	OPAL	$E^{ee}_{ m cm}$ = 88 $-$ 94 GeV
91.1863 ± 0.0028		4.08M	² ABREU	2000F	DLPH	$E^{ee}_{ m cm}$ = 88 $-$ 94 GeV
91.1898 ± 0.0031		3.96M	³ ACCIARRI	2000C	L3	$E^{ee}_{ m cm}$ = 88 $-$ 94 GeV
91.1885 ± 0.0031		4.57M	⁴ BARATE	2000C	ALEP	$E^{ee}_{ m cm}$ = 88 $-$ 94 GeV
		• • We do	not use the following data for	averages,	fits, limits, etc. •	•
91.084 ± 0.107			⁵ ANDREEV	2018A	H1	$e^{\pm}p$
91.1872 ± 0.0033			⁶ ABBIENDI	2004G	OPAL	$E^{ee}_{ m cm}$ = LEP1 + 130 $-$ 209 GeV
$91.272 \pm 0.032 \pm 0.033$			7 ACHARD	2004C	L3	$E^{ee}_{ m cm}$ = 183 $-$ 209 GeV
91.1875 ± 0.0039		3.97M	⁸ ACCIARRI	2000Q	L3	$E^{ee}_{ m cm}$ = LEP1 + 130 $-$ 189 GeV
91.151 ± 0.008			⁹ MIYABAYASHI	1995	TOPZ	$E_{\rm cm}^{ee}$ = 57.8 GeV
$91.74 \pm 0.28 \pm 0.93$		156	10 ALITTI	1992B	UA2	$E_{ m cm}^{p\overline{p}}$ = 630 GeV
$90.9 \pm 0.3 \pm 0.2$		188	11 ABE	1989C	CDF	$E_{ m cm}^{p \overline{p}}$ = 1.8 TeV
91.14 ± 0.12		480	12 ABRAMS	1989B	MRK2	$E^{ee}_{ m cm}$ = 89 $-$ 93 GeV
$93.1\pm1.0\pm3.0$		24	13 ALBAJAR	1989	UA1	$E_{\rm cm}^{p \bar{p}}$ = 546,630 GeV

Potentially first measurement in pp collider!

m_Z at LHCb

• Most sensitive with $Z \rightarrow \mu\mu$

- 2016 dataset sufficient to study the <u>feasibility</u> of the analysis
 - Statistical precision of 7 MeV
 - Run2+3 can then challenge LEP result

• How low can we get the systematics?

Dataset and selections

- Selection of:
 - $Z \rightarrow \mu \mu$
 - Muon $\eta: 2 < \eta < 4.5$
 - Muon p_T > 20 GeV
 - Typical trigger requirements
 - Loose track and Impact Parameter requirements
- ~300 k data events after selections in 2016

Backgrounds

Measurement Strategy

- Fit compares full simulation with the data
- m_z hypothesis varied by reweighting full simulation with templates
- Using a special version of POWHEG which provides predictions in QED at NLO
- Using a scheme where m_z is an input
- Blinded by a random offset

Theoretical Uncertainties

- Final State Radiation
 - Default description uses Pythia
 - Can be switched to Herwig & Photos

- Parton Distribution Functions
 - Using NNPDF default
 - Can be switched to MSHT20 or CT18

Source	Size [MeV]		
Z QED Final State Radiation	3.2		
Parton Distribution Functions	1.7		

Other sources under consideration but expected to be small

Data and Simulation Corrections

- Data Corrections
 - Run-number dependence in momentum scale
 - Curvature bias with a novel method* [2311.04670]

- Simulation Corrections
 - Muon Trigger/ID/Tracking Eff.
 - Isolation Efficiencies

Source	Size [MeV]
Curvature Bias	0.8
ID, Trigger, Tracking	0.1
Isolation Efficiencies (WIP)	<0.1

*Pseudomass method, see backup 🙂

Momentum Smearing

Momentum scale offset

Curvature Smearing

$p_{\mu} \rightarrow (1+\alpha)(1+\mathcal{R}_1\sigma_1)(1+p\mathcal{R}_2\sigma_2)(p+\beta)$

Momentum Smearing

"Energy Offset"

Momentum Smearing

- Simultaneous fit using J/ψ , $\Upsilon(1S)$
- No *Z* !
- Fix Energy Offset (too highly correlated wrt others)
 - Vary by fixed amounts to assess syst.

Challenges:

- Energy offset needs to be better understood
- Fit unstable at larger number of bins

Parameter	Value	Error
Momentum Bias	-0.05	0.01
Momentum Smear eta 0	2.66	0.04
Momentum Smear eta 1	2.15	0.06
Curvature Smear Flat eta 0	0.46	0.09
Curvature Smear Flat eta 1	1.64	0.02
Energy Offset (fixed)	0	0

Results

Source	Size [MeV]
Theory Uncertainty total	3.6
Z QED Final State Radiation	3.2
Parton Distribution Functions	1.7
Experimental total	8.1
Energy Offset	5.5
$\Upsilon(1S)$ Mass	3.8
Quarkonia FSR	2.3
Curvature Biases	0.8
Momentum Smearing	1.4
ID, Trigger, Tracking	0.1
J/ψ Mass	< 0.1
Backgrounds (WIP)	< 0.1
Isolation (WIP)	< 0.1
Statistical total	7.4
Total	11.6

Table still incomplete, will update as more studies progress ¹²

Summary

- m_z measurable at *LHCb*!
- 8 MeV systematic achievable with 2016
- Try to finalise as a proof of principle measurement
- Need to

...

- Improve momentum calibration understanding
- Cross checks

Source	Size [MeV]
Theory Uncertainty total	3.6
Z QED Final State Radiation	3.2
Parton Distribution Functions	1.7
Experimental total	8.1
Energy Offset	5.5
$\Upsilon(1S)$ Mass	3.8
Quarkonia FSR	2.3
Curvature Biases	0.8
Momentum Smearing	1.4
ID, Trigger, Tracking	0.1
J/ψ Mass	< 0.1
Backgrounds (WIP)	< 0.1
Isolation (WIP)	< 0.1
Statistical total	7.4
Total	11.6

Backups

Using old results, take numbers/plots with a grain of salt

Curvature Bias With Pseudomass

 Applied to data/mc to correct curvature bias

- Use Pseudomass method like in other EW analyses
- Performed by fitting pseudomass distribution of μ^+ and μ^-

$$\mathcal{M}^{\pm} = \sqrt{2p^{\pm}p_T^{\pm}\frac{p^{\mp}}{p_T^{\pm}}(1-\cos\theta)}$$

Cross Checks

- Brief look, still plenty to check
- ullet Check against magnet polarity and ϕ_d
 - ϕ_d = angle between normal of $Z \to \mu \mu$ decay plane and the magnetic field

Name	Central value	Stat. unc.	χ^2	Variation	Name	Central value	Stat. unc.	χ^2	Variation
up	91288.20	10.56	32.19	0.00	$\phi_d < \frac{\pi}{2}$	91303.18	10.39	48.09	0.00
down	91291.82	10.26	40.39	3.62	$\phi_d \ge \frac{\pi}{2}$	91276.46	10.42	45.95	-26.71

Data Corrections

- Momentum scale corrected downwards by ~ 10⁻⁴, additional run-number dependence at a similar level
- Curvature bias corrected by the *Pseudomass* method <u>arXiv:2311.04670</u>

 $10^{-4}/\text{GeV}$

-2

17

Momentum Scale Theory

- Have N bins in eta/phi b_i , with each bin having an associated scaling parameter δ_i . Bin U1S in eta / phi for positive and negative muons $b_{i+}b_{j-}$
- Measure dimuon mass d_{ij} and error $\sigma_{d,ij}$ in each $b_{i+}b_{j-}$ bin
- Scaling parameters δ_i defined by (massless muons)

$$M_s = \sqrt{\delta_i p_i \delta_j p_j (1 - \cos \theta)} = \sqrt{\delta_i \delta_j} M_{pdg}$$

• Extract scaling parameters δ_i by minimizing

$$\chi^{2} = \sum_{i,j \in b} \left(\frac{d_{ij} - \sqrt{\delta_{i} \delta_{j}} M_{pdg}}{\sigma_{d,ij}} \right)$$

Momentum Scale

- Momentum smearer limited in the amount of η bins usable
- Extract $\Upsilon(1S)$ scaling parameters for both data and simulation
- Used to correct simulation
- -5 MeV shift on m_Z

$$\chi^2 = \sum_{i,j \in b} \left(\frac{d_{ij} - \sqrt{\delta_i \delta_j} \, M_{pdg}}{\sigma_{d,ij}} \right)^2$$

Selections

```
"nCandidate":"(nCandidate==0)",
"M": "(V_M > 86 \& V_M < 96)",
"PT_mum" : "(mum_pt > 20)",
"PT_mup" : "(mup_pt > 20)",
"ETA_mum" : "(mum_eta > 2.0 && mum_eta < 4.5)",
"ETA_mup" : "(mup_eta > 2.0 && mup_eta < 4.5)",
"Psanity": "( mup_P < 2000 && mum_P < 2000 )",
"Trigger": "((mup_L0MuonEWTOS && mup_Hlt1TOS && mup_Hlt2TOS) ||
(mum_L0MuonEWTOS && mum_Hlt1TOS && mum_Hlt2TOS))",
"ISO": "(mup_ISO_PF < 10.0 && mum_ISO_PF < 10.0)",
"IPCHI2": "(mup_IPCHI2 < 100 && mum_IPCHI2 < 100)",
"TRCHI2": "(mup_TRCHI2 < 1.8 && mum_TRCHI2 < 1.8)",
"MomErr":"(mup RelMomErr < 0.06 && mum RelMomErr < 0.06)"
```