Quarkonia detection with the ALICE muon arm and low-x PDFs

D. Stocco¹ and E. Vercellin¹ R. Guernane² (correlated continuum production)

¹Università/INFN Torino ²LPC Clermont-Ferrand

June $8^{\rm th},\,2006$

Part of this work was supported by the EU Integrated Infrastructure Initiative HadronPhysics Project under contract number RII3-CT-2004-506078.

= ~ ~ ~

Outline

1 Detector description

2 Simulation

- Technique
- Input
- Results

三日 のへの

Outline

1 Detector description

- Technique
- Input
- Results

P.

∃ → < ∃</p>

三日 のへの

Detector description Simulation PDF

ALICE muon spectrometer

4 E N 4 E N

ELE DQA

Outline

- Technique
- Input
- Results

 三日 のへの

-

Detector description Simulation PDF Results

Fast simulation

- Existing models foresee a large number of quarkonia produced in pp collisions at the LHC (order of $\sim 10^8$ in $10^7 {\rm s}$ for ${\rm J}/\psi{\rm s}$ decaying in muon pairs).
- Full Monte Carlo simulations require prohibitively long computing time.

Fast simulation

- Parameterization of the whole spectrometer response at the single muon level.
- It can be divided in two phases:
 - Particle generation from rapidity and transverse momentum distributions.
 - Assignment of detection probability according to kinematic parameters of generated particle.

ELE DQA

Detector description Simulation PDF Results

Heavy quarkonia: total cross sections

- "Prompt" total cross sections
 (σ) including:
 - direct production (σ_{dir})
 - feed-down from higher-mass quarkonia resonances

	From Color Evaporation Model		
\Rightarrow		$\sigma \times BR_{\mu^+\mu^-}$	σ_{dir}/σ
	Υ	28 nb	0.52
	J/ψ	3.18 µb	0.62

Caveat: CEM predictions in agreement with Tevatron data for Υ , but not for J/ ψ (factor of ~ 2 less) \rightarrow "Conservative" approach.

Only for J/ψ :

- "From B decay" cross section ($\sigma_{B \rightarrow J/\psi}$) obtained with PYTHIA:
 - + $b\overline{b}$ pairs produced with $\sigma_{b\overline{b}}=$ 0.51 mb (ALICE-INT-2003-019)
 - $B \rightarrow J/\psi$ forced (BR from PYTHIA, 1.16% on averge)
 - J/ $\psi \rightarrow \mu^+ \mu^-$ forced (BR from PDG, 5.88%)

化原因 化原因

Heavy quarkonia: prompt differential cross sections

Simulation

Input

• Rapidity (y) distributions for resonance \rightarrow CEM

 $^{^{1}}$ A. Accardi et al., "Hard probes in Heavy Ion Collisions at the LHC: PDFs, Shadowing and pA Collisions" (Ξ) (Θ) (Θ

• Rapidity (y) distributions for resonance \rightarrow CEM

• p_t distributions for resonance \rightarrow extrapolation of CDF data.

- Fit of CDF $p_{\rm t}$ distribution @ 1.96 TeV
- Extrapolation 1.96 \rightarrow 14 TeV: $< p_{\rm t}^2 >$ dependence on \sqrt{s} by CEM¹.

1A. Accardi et al., "Hard probes in Heavy Ion Collisions at the LHC: PDFs, Shadowing and pA Collisions" (🗟) (🗟) (🚊) (🔤) ()

Heavy quarkonia: from B decay differential cross section

Innut

Simulation

• J/ ψ from B: $p_{\rm t}$ and y distributions from PYTHIA

ALICE Muon Spectrometer is unable to distinguish ${\rm J}/\psi$ coming from B meson decays.

₽

Differential cross sections summed together with appropriate weight. No distinctions will be made in the following.

Background

- Correlated (muon pairs from chain decays of $b\overline{b}$ and $c\overline{c}$)
 - Heavy hadrons produced with PYTHIA.
 - Semileptonic decay forced.
 - Unlike-sign muon pairs from decay chains of one $Q\bar{Q}$ pair selected.
- Combinatorial (muon pairs from uncorrelated decay of $b\overline{b}$, $c\overline{c}$, π , K)
 - Heavy hadrons like in correlated background.
 - π/K produced with PYTHIA. Semileptonic decay forced. Resulting muons weighted with the probability that π/K decay before reaching the Muon Spectrometer absorber.
 - Unlike-sign muon pairs from uncorrelated particles selected.

Detector description Simulation PDF Results

Quarkonia detection probabilities

• Computed with fast simulation (including geometrical acceptance, reconstruction and trigger efficiency)

Detector description Simulation PDF Results

Quarkonia detection probabilities

• Computed with fast simulation (including geometrical acceptance, reconstruction and trigger efficiency)

Detector description Simulation PDF Technique Input Results

Expected rates

- Data taking scenario for pp run in ALICE IP:
 - $\mathcal{L}=5 imes10^{30}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$; $t=10^7$ s
- Number of detected quarkonia:

= nac

etector description Simulation PDF Technique Input Results

Expected yields vs. $p_{\rm t}$ and y

Detector description Technique Simulation Input PDF Results

Distributions corrected for detection efficiency

Ratio between bottomonia resonances

• No dependence of p_t distribution on quarkonia masses, as expected from input.

Detector description Simulation PDF Results

Conclusions

Conclusions

- J/ ψ and Υ yields for $10^7~{\rm s}$ of pp data taking at 14 ${\rm TeV}$ have been evaluated.
- Muon Spectrometer able to resolve the higher-mass heavy quarkonia.
- Statistics good enough for measurements of p_t and y distributions, which can be further used for QCD studies of quarkonia production mechanism.

Revol scenario for November 2007

• $\mathcal{L} = 10^{30} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

• t = 20 shifts of 10 hours = 7.2×10^5 s

$$\begin{array}{c|ccc} & \Upsilon & 691 \\ \hline \Upsilon' & 125 \\ \hline \Upsilon'' & 76 \\ \hline J/\psi & 72000 \\ \psi' & 1872 \\ \end{array}$$

A remarkable number of ${\rm J}/\psi$ available for physics studies since the first month.

Outline

Detector description

- Technique
- Input
- Results

∃ → < ∃</p>

A ►

三日 のへの

Observables sensitive to PDFs at small x

For J/ ψ production at 14 TeV: $y > 3 \Leftrightarrow x < 10^{-5}$. The rapidity window covered by the Muon Spectrometer is well suited.

 $\sigma_{\mathrm{J}/\psi}$ from CEM

ELE NQA

Observables sensitive to PDFs at small x

For J/ ψ production at 14 TeV: $y > 3 \Leftrightarrow x < 10^{-5}$. The rapidity window covered by the Muon Spectrometer is well suited.

 $\sigma_{{\mathsf J}/\psi}$ from CEM

$\mathrm{d}\sigma_{\mathsf{J}/\psi}/\mathrm{d}y$ from CEM

PDF distributions

• LO calculations adopted

$$\mathsf{J}/\psi$$
 \Leftarrow

Region explored by (2.5 < y < 4)

Rapidity distributions with different PDFs

Integral in the rapidity acceptance (2.5 < y < 4.0) is normalized to 1

Approximations

- Calculations LO
- gg contrib. dominant

-

Comparison with simulation

Small differences in shape between simulated data and MRST (LO) are due to the fact that the first include contribution of J/ψ from B decay

However the accuracy of data that will be taken in muon spectrometer seems good enough to...

... put some constraints on gluon distribution functions in the low x region

Detector description Simulation PDF

x regions explored with different collision systems

• pp collisions @ 14 TeV: high statistics but small overlap with x regions explored in Pb-Pb

ъ.

Conclusions and perspectives

Conclusions

• From a simple analysis (based on CEM and including some approximations) the shape of the rapidity distribution of prompt $J/\psi s$ in the rapidity region covered by the muon spectrometer seems to be sensitive to gluon distribution at low x.

Perspectives

- Extension of the study to p-Pb (Pb-p) and d-Pb (Pb-d)
- More sophisticated calculations based on NRQCD ???

ELE NOR

Backup slides

D. Stocco et al. Quarkonia detection with the ALICE muon arm and low-x PDFs

三日 のへで

∃ → < ∃</p>

Rapidity:
$$y = \frac{1}{2} \ln \left(\frac{E + \rho_z}{E - \rho_z} \right)$$

Pseudorapidity:
$$\eta = -\ln an rac{artheta}{2}$$

Bjorken x:
$$x = \frac{Q^2}{2\mathbf{P} \cdot \mathbf{q}}$$

Correlated background processes

三日 のへの

Effects of chamber misalignment

E. Dumonteil, PhD. thesis

ELE OQO