Leading Neutron Energy & p_T Distributions from ZEUS

B. Schmidke MPI München On behalf of the ZEUS collaboration

Outline:

- Motivations: LN production, One Pion Exchange (OPE), absorption
- Data sets: DIS, photoproduction (γp), LN measurement
- LN in DIS: energy, p_{T} distributions
- Comparison: LN in photoproduction & DIS
- Comparison: LN & leading protons
- Comparison: OPE models, absorption (rescattering) models
- Comparison: LN in non-OPE MC models

Motivations: LN production, OPE

 LN can come from 'standard' fragmentation

(baryon # has to go somewhere)

- Can compare to 'standard' MC gens.:
 x_L, p_T² distributions
- LN can be produced via isovector exchange: One Pion Exchange (OPE)
- Parameterizations from low energy
- hadronic scattering data. Can compare: $x_L^{}$, p_T^{2} distributions

Motivations: Absorption

In DIS γ* is small; in photoproduction γ large, rescattering (absorption) of *n* may occur:
Compare photoproduction & DIS:

- x_{L} , p_{T}^{2} distributions
- effects of absorption?
- Compare to absorption (loss) calculations of D' Alesio & Pirner: Eur. Phys. J. A7 (2000) 109
 Recently: Kaidalov, Khoze, Martin, Ryskin 'Leading neutron spectra' hep-ph/0602215
 They calculate the effects of *absorption*
 - (rescattering), and subsequent *migration* of LN in (x_L, p_T^2) space
- Next speaker for details 🔌

(migration)

Data Sets

Inclusive data (i.e. no LN tag):

- DIS: $Q^2 > 2 \text{ GeV}^2$, $\langle Q^2 \rangle \approx 14 \text{ GeV}^2$
- $\gamma p: Q^2 < 0.02 \text{ GeV}^2$, e^+ tagged $\Rightarrow 180 < W_{\gamma p} < 255 \text{ GeV}$

LN measurement: Forward Neutron Calorimeter (FNC) & Tracker (FNT)

- 10.2 λ_{I} Pb-scint. calorimeter 105m from I.P.
- Scintillator hodoscope 1 λ_{I} into calorimeter for position detection
- Energy resolution $\sigma_{\rm E}/E \approx 0.7/\sqrt{E}$
- p_T resolution dominated by proton beam p_T spread ~50-100 MeV
- Magnet apertures limit $\Theta_n < 0.75 \text{ mrad} \Rightarrow p_T^2 < 0.476 x_L^2 \text{ GeV}^2$ <u>LN yields:</u>
- DIS, γp have very different inclusive cross sections $\sigma_{inc.}$
- For sensible comparisons look at LN yields: $\sigma_{LN} / \sigma_{inc}$
- Additional benefit: systematic uncertainties of central ZEUS cancel; only have LN systematic uncertainties

LN in DIS: x_L distribution

FUS 0.2^{0.18} 0.18 20 0.16 0.16 0.14 0.12 0.12 ZEUS (prel.) 40 pb^{*} • LN yield $\rightarrow 0$ at kinematic $\Omega^2 > 2 GeV^2$ $p_{T}^{2} < 0.476 x_{1}^{2} \text{ GeV}^{2}$ limit $x_1^2 \rightarrow 1$ Systematic uncertainty • Below $x_1^2 \approx 0.7$ yield drops due to decreasing p_{T}^{2} range 0.1 0.08 Systematic uncertainties from: 0.06 Proton beam 0° point 0.04 • FNC energy scale 0.02 Dead material before FNC O 02 0.3 0.5 0.6 0.7 0.8 0.9 0.4

XL

p_T² distributions: slopes & intercepts

• p_{T}^{2} distributions well described by exponential:

• Together intercepts $a(x_1)$ and slopes $b(x_1)$ fully characterize (x_1, p_T^2) distribution

Comparing yp & DIS

To minimize systematic uncertainties in comparison:

- Use only DIS from period when γp+LN trigger active (~20% of DIS sample)
- Many LN systematic uncertainties cancel taking ratios:
- Ratio of x_{L} distributions: $\gamma p/DIS$
- Ratio of p_T^2 distributions: $\gamma p/DIS$

 $\Rightarrow \Delta b = b(\gamma p) - b(DIS)$

Comparison $\gamma p/DIS$: x₁ distributions

02

0.9

ΧL

Comparison $\gamma p/DIS: p_T^2$ distributions

- Small but clear difference: $b(\gamma p) > b(DIS)$ for $0.6 < x_L < 0.9$
- Qualitatively consistent w/ absorption: more abs. @ small $r_{n\pi} \sim \text{large } p_T$
- Quantitative comparison: next speaker 11

Comparison: OPE models

Comparison: OPE w/ absorption

Recent work of Kaidalov,

Khoze, Martin & Ryskin:

- start with pure OPE
- some *n* rescatter on γ
- rescattered *n* migrate in (x_1, p_T)
- Very nice agreement with LN in γp:
- Much more next speaker \u00e4

Comparison: non-OPE MC models

- Compare to several popular
 MC models w/o OPE
 - (i.e. RAPGAP in *standard* mode)
- ~default settings for all models
- Here compare to DIS x_{T} distribution:
- LEPTO ~OK in shape, magnitude
- Others too few n, too low x_{I}

Comparison: non-OPE MC models

• Others wrong dependence, too low for $x_1 > 0.5$

16

Summary

- Best measured LN x_L , p_T distributions in DIS, γp
- Comparison DIS $\leftrightarrow \gamma p$: evidence for absorption of *n* in large γ
- Pure OPE does not fully describe data
- More refined calculations: OPE+absorption+migration
 - \Rightarrow very promising agreement with data (next speaker \searrow)
- MC models with 'standard' fragmentation do not describe the data (LEPTO has some promise)