Towards a diffractive and forward physics program in CMS with TOTEM and FP420

Monika Grothe Wisconsin/Turin Hera-LHC workshop meeting CERN June 2006

A snapshot of the current activities in the CMS fwd and diff working group

Short-term goal: Document, jointly written with Totem, that shows the potential of CMS + TOTEM (+ FP420)

See also in this workshop: Totem talks by R. Orava (Tues) and J. Kaspar (Wed) FP420 talk by B. Cox (Thur)

CMS + TOTEM + FP420: Coverage in ξ

At nominal LHC optics, $\beta^*=0.5m$

Note: Totem RP's optimized for special optics runs at high β^*

CMS + TOTEM + FP420: Coverage in n not as seamless

A survey of the accessible diffractive and forward processes

- X is measured in the central CMS apparatus
- <u>Scattered protons</u> may be visible in Roman Pot detectors along beam line
- Note <u>large rapidity gap(s)</u> between the scattered proton(s) and X

o) If X = anything – then dominated by soft physics; contributes to pile-up, i.e. soft events that overlay signal events at LHC (3.5 @ 10³³ cm⁻²s⁻¹, 35 @ 10³⁴ cm⁻²s⁻¹) Inclusive Single Diffraction (SD) ~ 15 mb, Double Pomeron Exchange (DPE) ~ 1 mb 1 mb = 100 events/s @ 10²⁹ cm⁻² s⁻¹

 o) If X includes jets, W's, Z's, Higgs (!): hard processes, calculable in QCD. Give info on proton structure, QCD at high parton densities, discovery physics etc

The accessible physics is a function of instantaneous and integrated luminosity

"Low":

Lumi low enough that pile-up is negligible, i.e $<10^{32}$ cm⁻²s^{-1,} and integrated lumi a few 100 pb⁻¹ to < 1 fb⁻¹

•Measure inclusive SD and DPE cross sections and their Mx dependence

•In addition to running at nominal LHC optics:

TOTEM suggests few days of running with $\beta^*=90m @ 10^{31} \text{ cm}^{-2}\text{s}^{-1}$, with much improved coverage for diffractive events compared to $\beta^*=0.5m$ (see R. Orava talk)

Program envisaged as part of the routine CMS data taking at $\beta^*=0.5m$:

"Intermediate":

Lumi > 10³² cm⁻²s⁻¹, pile-up non-negligible and integrated lumi 1 to a few fb⁻¹ •Measure SD and DPE in presence of hard scale (dijets, vector bosons, heavy quarks)

"High":

Lumi > 10³³ cm⁻²s⁻¹, pile-up substantial and integrated lumi several tens of fb⁻¹ •Discover the SM or MSSM Higgs in central exclusive production

•At intermediate to high lumi also rich program of $\gamma\gamma$ and γ p physics (QED)

A (non-exhaustive) snapshot of the on-going activities in CMS

CMS diffractive and forward physics working group, for RP detectors in collaboration with TOTEM

Note: Results of studies independent of specific detectors In particular assume all protons are detected that make it within beampipe to 220/420m location and are outside a $10\sigma+0.5$ mm cutout around the beam axis (~1.3mm @220m, ~4mm @420m)

Detectors at 420m included as option, are still in R&D stage by FP420 project, but could be installed in first long LHC shutdown period

Assume nominal LHC optics ($\beta^*=0.5m$) and 25ns bunch spacing in the following, unless stated otherwise

Inclusive DPE and SD ttbar production

A. Vilela, D. J. Damião, , A. Sznadjer, A. Santoro UERJ/Brasil

Detect ttbar in semileptonic decay channel: pp \rightarrow p+X+(tt)+X+p tt \rightarrow bbqq μ v_µ

Event yield after cuts:

DPE case between 1 and 100 per 10 fb⁻¹, depending on theoretical model

р

Backgrounds under study diffractive: other ttbar decay channels, W + jets non-diffractive: inclusive ttbar in coincidence with protons from diff pileup events

CMS muon trigger thresholds not a limiting factor in event yield

 $J/\Psi \rightarrow \mu^+\mu^-$

Diffractive Production of B mesons decaying into J/ψ

D. J. Damião, A. Vilela, A. Sznadjer, A. Santoro UERJ/Brasil

Inclusive DPE and SD production of B mesons Event yields: DPE case - a few events per pb⁻¹ SD case - a few 1000 events per pb⁻¹

Backgrounds under study

8

CMS muon trigger thresholds one limiting factor in event yield

Detecting a light SM/MSSM Higgs in central exclusive production $pp \rightarrow pHp$

Calculate mass from fractional momentum

loss of protons: $\xi_1 \xi_2 s = M^2$

shields color charge of other two gluons

CEP of a light SM/MSSM Higgs

*Selection rules result in the central system being (to good approx) $J^{PC} = 0^{++}$, thereby reducing the dominant $gg \rightarrow b$ bbar background to $H \rightarrow$ bbar decay

♦ For SM Higgs: Fighting chance with S/B~1, though low event yield But proton tagging may be the discovery channel in the MSSM

Studies by Marek Taševský (Physics Inst. Prague + Univ. Antwerp)

H->WW in SM	hep-ph/0505240
H->WW(bb,tautau) in MSSM	Ongoing
H->bb	Tuning of cuts
Comparison of models	Proceed. HERA-LHC
Models vs. Data	Ongoing
Background from coincidence	e of non-diff events with diff pile-up under study

(See Marek's talk on Thursday)

Trigger major limiting factor, see further down

- WH photoproduction (M. vander Donckt et al.)

Exclusive lepton pairs

QED process (a) production σ precisely known

event generator LPAIR based on ME by Vermaseren

Photon physics with roman pots III

Drell – Yan process with CASTOR

P. van Mechelen, S. Ochesanu (Antwerp), E. Sarkisyan-Grinbaum (Manchester)

Gives access to low- x_{BJ} partons in proton in case of large imbalance of fractional momenta $x_{1,2}$ of leptons, which are then boosted to large rapidities

CMS CASTOR calorimeter range $5.3 \le |\eta| \le 6.6$ gives access to $x_{BJ} \sim 10^{-7}$ CASTOR has 16 segments in azimuth and logitudinally has electromagnetic and hadronic section

CASTOR alone can provide crude estimate of $\rm M_{II}$ Can be much improved with information from Totem tracker T2 in front of CASTOR

Triggering on Drell – Yan with CASTOR

P. van Mechelen, S. Ochesanu (Antwerp), E. Sarkisyan-Grinbaum (Manchester)

- Drell–Yan signal
 - High electromagnetic energy
 - Small hadronic energy fraction
 - One charged track
- QCD background
 - Rapid decrease of number of segments with large electromagnetic energy
 - Symmetric electromagnetic and hadronic energy depositions
 - Low charged multiplicity
- \rightarrow separation between signal and background possible at L1 ? Under study

Major issues in selecting diffractive events with CMS + TOTEM + FP420

- 1. Background from non-diffractive events that are overlaid with diffractive pile-up events (1/5 of pile-up events are diffractive)
- 2. Trigger is a major limiting factor for selecting diffractive events

The CMS trigger menus now foresee 1% of the trigger bandwidth on L1 and HLT for a dedicated diffractive trigger stream

where the combination of forward detector information with the standard CMS trigger conditions (jets, muons) makes it possible to lower the jet/muon thresholds substantially and still stay within the CMS bandwidth limits

This is the completion of the trigger studies presented in the proceedings of the HERA-LHC workshop of 2004/2005 Now available as CMS note 2006/054 and TOTEM note 2006/01: "Triggering on fwd physics", M.Grothe et al.

120GeV Higgs has L1 jet trigger signature: 2 jets ($E_T < 60$ GeV) in CMS Cal

Measured L1 jet E_T on average only ~60% of true jet E_T
L1 trigger applies jet E_T calibration and cuts on calibrated value
Thus: 40 GeV (calibrated) ~ 20 to 25 GeV measured
Cannot go much lower because of noise
→ Use rate/efficiency @ L1 jet E_T cutoff of 40 GeV as benchmark

L1 2-jet rate for central jets ($|\eta| < 2.5$) @ L1 jet E_T cutoff of 40 GeV for Lumi 2 x 10³³ cm⁻² s^{-1:} ~**50 kHz**, while considered acceptable: **O(1 kHz))**

Need additional conditions in trigger: Forward detectors !

L1 output rate reduction with fwd detectors

- \rightarrow Very good reduction of rate in absence of pile-up both with T1/T2 veto and with near-beam detectors at 220/420m
- \rightarrow However, reduction decreases substantially in the presence of pile-up because of diffractive component in pile-up

Richard Croft, Bristol

Lumi	#Pile-up	L1 2-jet rate	Total	Reduction when requiring track in RPs					
nosity	events	[kHz] for	reduc				at 220 & 420 m		
$[cm^{-2}s^{-1}]$	per bunch	$E_T > 40 \text{GeV}$	tion	at 220 m		at 420 m	(asymmetric)		at 420
	crossing	per jet	needed		$\xi < 0.1$			$\xi < 0.1$	& 420 m
1×10^{32}	0	2.6	2	370					
1×10^{33}	3.5	26	20	7	15	27	160	380	500
2×10^{33}	7	52	40	4		14	80	190	150
5×10^{33}	17.5	130	100	3	5	6	- 32	- 75	30
1×10^{34}	35	260	200	2	3	4	17	39	10

Achievable total reduction: 10×2 (H_T cond) x 2 (topological cond) = 40

Jet

isolation

criterion

Can win additional factor ~ 2 in reduction when requiring that the 2 jets are in the same η hemisphere as the RP detectors that see the proton

For dijet trigger adding L1 conditions on the near-beam detectors provides a rate reduction sufficient to lower the dijet threshold to 40GeV per jet while still meeting the CMS L1 bandwidth limits for luminosities up to $2x \ 10^{33} \text{ cm}^{-1} \text{ s}^{-1}$

L1 diffractive signal efficiencies - examples

Example for single-diffractive process: SD production of W's

y-axis left: efficiency y-axis right: #events per pb⁻¹

At 2x 10^{33} cm⁻² s⁻¹ 1 jet & single-sided 220m cond with ξ <0.1 cut would lead to 1kHz L1 output rate for jet threshold E_T > 70GeV, which means several 100 SD W's per pb⁻¹

Also looked at SD prod of Z's and dijets

Central exclusive prod. of $H(120) \rightarrow b$ bbar:

2-jets (E_T >40GeV) & single-sided 220m cond. results in efficiency ~12%

Can add another $\sim 10\%$ efficiency by introducing a 1 jet & 1 μ (40GeV, 3GeV) trigger cond.

Richard Croft, Bristol

HLT strategies for fwd detectors trigger stream

Conditions:

- A: L1 di-jets with E_T >40 GeV & single-arm 220 m cond. with ξ <0.1 cut
- **B:** Central ($|\eta| < 2.5$) HLT di-jets with: 2.8 < $|\text{phi1} - \text{phi2}| < 3.5 \& (E_T(1) - E_T(2))/ (E_T(1) + E_T(2)) < 0.4 \& E_T(1,2) > 40 \text{ GeV}$

C: Compare fractional momentum loss of proton as calculated from jets to ξ measured with near-beam detectors at 220m:

 $\xi_{+(-)} = s^{-1/2} \sum Et_i \exp(-(+)\eta_i)$, where +/- denotes the two hemispheres Select events where two ξ values match within 2σ

D: Either one of 2 jets is b-tagged.

E: A proton is seen at 420m.

Richard Croft, Bristol

HLT selection condition	A+B+C	A+B+D	A+B+C+E
HLT rate at 1×10^{33} cm ⁻² s ⁻¹	15 Hz	20 Hz	< 1 Hz
HLT rate at 2×10^{33} cm ⁻² s ⁻¹	60 Hz	80 Hz	1 Hz
Signal eff. $H(120)$ GeV/c ²) $\rightarrow bb$	11%	7%	6%

In order to keep the HLT rate below 1Hz, needs either prescale, double b-tag or near-beam detectors at 420m in addition to 220m ones

Map to diffraction and fwd physics in CMS

Low lumi Rapidity gap HF, Castor, E Proton tag se RPs at 220m Diffraction is High cross se "Soft" diffra Interesting fo	selection possible SCs, T1, T2 election optional and 420 m about 1/4 of σ _{tot} ection processes action or start-up running r understanding pile-up	High lumi No Rapidity gap selection possib Proton tag selection indispensab RPs at 220m and 420 m Central exclusive production Discovery physics: Light SM Higgs MSSM Higgs Extra dimensions	le	
	Gamma-gamma and gam Forward energy flow - in QCD: Diffraction in prese Low-x structure of High-density regin Diff PDFs and gene Diffractive Drell-Ya	ma-proton interactions (QED) out to cosmics shower simulation nce of hard scale the proton e (Color glass condensate) ralized PDFs n		
CMS alone		CMS with Totem and/or FP420		

Proton tagging with TOTEM

TOTEM:

An approved experiment at LHC for measuring σ_{tot} and $\sigma_{elastic}$, uses same IP as CMS TOTEM's trigger and DAQ system will be integrated with those of CMS , i.e. common data taking CMS + TOTEM possible

220m detector loc. optimal for special optics runs ($\beta^*=1540m$) @ $10^{28} - 10^{29}cm^{-2}s^{-1}$ TOTEM suggests few days of running with $\beta^*=90m$ @ $10^{31} cm^{-2}s^{-1}$, with much improved coverage for diffractive events compared to $\beta^*=0.5m$ (@ $10^{33} - 10^{34} cm^{-2}s^{-1}$)