New CDF Results on Diffraction and Monte Carlo Studies using Various Diffractive PDFs

K. Terashi The Rockefeller University (on behalf of the CDF Collaboration)

> HERA-LHC workshop CERN, Geneva 6-9 June 2006

Outline

New Diffraction Results from CDF

Diffractive Structure Function

- SD/ND dijet ratio vs x_{Bjorken}
- > Q² dependence of SD/ND ratio
- t distributions in SD events

Exclusive Production

- Exclusive di-jet
- Exclusive di-electron and di-photon

Monte Carlo Studies of Diffractive PDFs

DPE Event Kinematic Shapes

- Comparison between data and MC predictions
- > Comparisons using different PDFs at hadron level

Summary

Diffractive Structure Function

SD/ND Dijet Ratio vs x Bjorken

agreement with Run I result
 no \(\xi\) dependence in 0.03<\(\xi\)
 0.09

Q² Dependence of SD/ND Ratio

t-distributions in SD Events

 10^{4}

Exclusive Dijet

Exclusive $\gamma\gamma$

Measure exclusive dijet/ $\gamma\gamma$ cross sections to calibrate predictions for exclusive Higgs production at the LHC

Search for Exclusive Dijets

<u>Strategy</u>

- > Select inclusive DPE dijets : $\overline{p} + p \rightarrow \overline{p} + X$ (≥ 2 jets, ...) + gap
- Reconstruct dijet mass fraction :

iet

Look for excess in data over inclusive DPE dijet MC (POMWIG)

Excess of events in data observed at high R_"

Is this exclusive signal?

Inclusive+Exclusive Dijet Monte Carlo vs Data

The excess at high R_{jj} is well described by both exclusive dijet production models

Heavy Flavor Jet Fraction vs R_{ii}

Exclusive $gg \rightarrow q\overline{q}$ Jz=0 suppression is expected

<u>Use b/c-quark Jet Data</u> Look for suppression of b/c-quark jet fraction in the high R_{jj} region - many exp. systematics cancel in ratio - b/c-quarks identified event-by-event

CDF Run II Preliminary

Comparing Inclusive Jet and Heavy Flavor Jet Results

Exclusive ee Production

16 candidate events observed background : $2.1_{-0.3}^{+0.7}$ events $\sigma_{\text{MEAS.}} = 1.6_{-0.3}^{+0.5} (\text{stat}) \pm 0.3 (\text{syst}) \text{ pb}$

QED: LPAIR Monte Carlo $\sigma_{\rm LPAIR}$ = 1.711 \pm 0.008 pb

Exclusive yy **Production**

3 candidate events observed background : 0.0 $^{+0.3}_{-0.0}$ events $\sigma_{\text{MEAS.}} = 0.14 ^{+0.14}_{-0.04}$ (stat) ± 0.03 (syst) pb

MC Studies of Diffractive PDFs

Motivation :

Obtain inclusive diffractive event shape in the expected exclusive dijet signal region

- Simulate DPE (Pomeron-Pomeron) events
- Focus on kinematic distribution shapes (so far)
- > Normalization under study to extract F_{ii}^{D} from DPE dijets

Basic Tool : POMWIG v1.3 β (Cox and Forshaw, CPC 144 (2002), 104) is used as an event generator of inclusive dijets \checkmark Pomeron flux : $\propto 1/\xi^{2\alpha_{IP}(t)-1}$ \checkmark Pomeron PDF : 1997 H1 QCD fits

This Study : modifications to diffractive structure functions

H1-fit2 H1-fit3	H1 (N)LO-fit to '94 LRG data (POMWIG default)
CDF	CDF Run I F_{jj}^{D} from SD/ND dijets \rightarrow
CDF ⊕ H 1	CDF Run I F_{jj}^{D} from DPE/SD dijets \rightarrow
ZEUS-LPS	ZEUS NLO-fit to '97 LPS data
ZEUS-M _X	Groys, Levy, Proskuryakov (GLP) NLO-fit to '98-'99 ZEUS M _x data

CDF F^D from SD Dijets

QCD factorization breaks down

Regge factorization holds

Formation of 2nd gap less suppressed

CDF Data & CDF dPDF

Good agreement in shape (except R_{ii} in the signal region)

CDF Data & CDF⊕H1 dPDF

HERA & CDF dPDFs : E_{T}^{Jet2}

Summary

New CDF Results on Diffraction

Diffractive Structure Function:
Extended Run I results using single diffractive dijets

Q² dependence of F^D_{jj} → Pomeron evolves like proton?
Slope at t = 0 is independent of Q²

Exclusive Production:
Observed excess events at high R_{jj}, being consistent with exclusive dijets
Observed events being consistent with p̄p → p̄yyp p̄p → p̄eep : nice cross check for di-photon

Monte Carlo Studies of Diffractive PDFs

DPE Dijet Kinematic Shapes :

- ▷ CDF and CDF⊕H1 dPDFs reproduce DPE dijet data shape well
- > H1-fit2 dPDF reasonably agrees with the data
- Hadron-level comparison using dPDFs:
 - H1-fit2 and ZEUS-LPS : similar in both yield and shape
 - \checkmark ZEUS- M_{χ} : much lower yield and softer shape

Backup

CDF Data and H1-fit2 PDF

Detector Effects

All distributions are POMWIG (CDF⊕H1)

HERA and CDF PDFs : η_{Jet2}

All distributions are POMWIG Hadron Level

All distributions are POMWIG Hadron Level

All distributions are POMWIG Hadron Level

CDF II Forward Detectors

Run II Diffractive Dijet Sample

- J5 : ≥ 1 Cal. Tower with $E_{\tau} > 5$ GeV
- RP+J5 : Leading Antiproton in RP + \geq 1 Cal. Tower with E_{τ} > 5 GeV

$$\xi_{\bar{p}}^{X} = \frac{M_{X}^{2}}{s} \approx \frac{\Sigma_{i} E_{T}^{i} e^{-\eta_{i}}}{\sqrt{s}}$$

> sum over all particles except antiproton > use calorimeter towers of E_{τ} >100 MeV

≻ MiniPlug energy scale: $\pm 25\%$ → $\Delta \log \xi = \pm 0.1$

Diffractive dominant events at ξ < 0.1: (RP acceptance region)

Peak at $\xi \sim 0.6$: \rightarrow overlap of ≥ 1 ND events

Jet Pseudorapidity Cuts

Dijet Mass Fraction : 3rd Jet Veto + (A)

Normalizations fixed to the ones obtained in the fits to 3rd jet veto only Distributions scaled using #events falling into (A)

Dijet Mass Fraction : 3rd Jet Veto + (B)

Normalizations fixed to the ones obtained in the fits to 3rd jet veto only Distributions scaled using #events falling into (B)

Run II Prospects

Diffractive W Production

Probe quark content of the Pomeron
 → More direct comparison with HERA
 Status: >10x more data than Run I analysis in progress

Low luminosity (~5E29) data!! > full 36px36p bunch store (~30h) > all CDF detectors operation

Logged ✓ ~2.5M : High E_T FwdCal (|η|>3.6) ✓ ~5M : High E_T FwdCal + Cent. Veto ✓ ~10M : Gap+Jet → more exciting results!!