Status and startup for physics with LHCb

G. Passaleva (INFN-Firenze) On behalf of the LHCb collaboration

CERN June 6-9 2006

Outline

- The LHCb experiment
 - Detectors
 - Trigger
 - Expected performance
 - Detector status
- LHC startup scenario
- Commissioning plans
- First physics measurements
- Conclusions

LHCb environment

Forward peaked, correlated bb pair production \Rightarrow LHCb is a forward spectrometer $2.0 < |\eta| < 5.3$

L tuneable by defocusing the beams

- Choose to run at <L> ~ 2×10³² cm⁻²s⁻¹ (max. 5×10³² cm⁻²s⁻¹)
 - Will be available from 1st physics run
 - Clean environment (n = 0.5)
- 2 fb⁻¹ / year

CERN June 6-9 2006

The LHCb spectrometer

CERN June 6-9 2006

Trigger

Output rate	Event type	Physics		
200 Hz	Exclusive B candidates	B (core program)		
600 Hz	High mass di-muons	J/ψ, b→J/ψX (unbiased)		
300 Hz	D* candidates	Charm		
900 Hz	Inclusive b (e.g. $b\rightarrow\mu$)	B (data mining)		

CERN June 6-9 2006

Expected performance

- Full detector simulation based on Pythia and GEANT4
- Full pattern recognition implemented:
- <u>Track finding efficiency</u>: ~ 95% for long tracks p > 10 GeV/c
- <u>Momentum resolution</u>: 0.4%
- <u>Mass resolution</u>: ~ 14 MeV/c² for B mesons
- Secondary vertex resolution (in z): ~ 170 μ m
- <u>Proper time resolution</u> for B decays: ~ 40 fs

Flavour tagging efficiency

	B _d	B _s
Comb. ϵD^2	4-5%	7-9%

Particle ID

CERN June 6-9 2006

Detector status: a snapshot from the pit

CERN June 6-9 2006

Muon system support walls

All four panels M2-M4 installed. 87% of muon chambers built

CERN June 6-9 2006

Muon chamber supporting wall from top

CERN June 6-9 2006

Outer Tracker installation

Arrival of Outer Tracker support structure April '06

CERN June 6-9 2006

HERA-LHC Workshop

G. Passaleva 11

Vertex detector installation

CERN June 6-9 2006

LHC both sides of the IP8

Detector status: details

- <u>Magnet</u>: installed & mapped
- <u>Vertex detector</u>: Vacuum tank being installed; silicon modules in production; installation at beginning of 2007
- <u>Tracking system</u>: Production almost complete; installation in the pit will end in fall 2006
- <u>Calorimeters</u>: installation finished, commissioning ongoing
- <u>RICH System</u>: RICH I shielding installed, installation completed by fall 2006; RICH II in the pit, installation ongoing
- <u>Muon system</u>: 85% of chambers produced; installation in progress
- ON/OFF-line software: is progressing well

Detector status

 Plan to have everything installed by the end of 2006/beginning of 2007

 Aiming to have the complete experiment ready for data taking in 2007

LHC startup scenario (from the LHCb point of view)

From the LHCb point of view this would be a desirable scenario:

<u>2007:</u> detector alignment and calibration, possibly already with J/ψ signals from pp collisions

2008: 0.5 fb⁻¹

2009: 1.0 fb⁻¹

<u>2010:</u> 1.5 fb⁻¹

i.e. ~3 fb⁻¹ by the end of 2010 at the required average luminosity of ~2x10^{32} $cm^{-2}s^{-1}$

Commissioning plans

Global commissioning without beam in 2006 - 2007

- Commission the subdetectors (starting now !)
- Test the DAQ
- Test the electronics calibration procedures
- Check the scalability of the system, improve when needed
- Use of circulating beam in summer 2007: LHCb is a forward detector, cosmics can not help: beam-gas gives useful tracks for time and position alignment. Study of beam gas events ongoing: useful also for measuring and monitorng the luminosity (cross section measurements! See M. Ferro-Luzzi contribution to this workshop)

Pilot Run (low luminosity)

- Without magnetic field: (time and space) alignments
- With magnetic field: Trigger setup and start collecting data

Preparing for physics...with 0.1 fb⁻¹ of data

1. Use special samples (mainly from inclusive HLT) for recontsruction and PID calibration and tuning: $J/\Psi \rightarrow \mu\mu$ for μ ID Tag Asym vs time (ps) χ^2/ndf

 $D^* \rightarrow D^0(K\pi)\pi$ for K/π ID and μ mis-ID

2. Use B^+/B^0 control channels for tagging tuning

3. Use B⁰ control channels for oscillation measurement, as a first check of tagging performance.

First physics measurements

LHCb physics program with the very first data:

- J/ ψ production studies (e.g. prompt vs B \rightarrow J/ ψ X, bb cross section)
- sin(2β) (as a proof of principle of CPV measurements)
- Δm_s and ϕ_s (after CDF Δm_{s_i} measurement, recent theoretical papers indicate ϕ_s measurement as very interesting for NP)

• $B_s \rightarrow \mu \mu$

J/ψ production studies

LHCb will record a very large sample of J/ψ

 $\sigma(J/\psi \text{ prompt}) = 0.313 \text{ mb}$

 $\sigma(J/\psi \text{ from B}) = 11 \ \mu \text{b}$

Inclusive HLT rate ~ 600 Hz True J/ ψ rate ~ 130 Hz \Rightarrow 10⁹ J/ ψ per year

First preliminary studies on bb production cross section using $B \rightarrow J/\psi$ decays are ongoing

- ATLAS/CMS will measure $|\eta|$ < 2.5
- ALICE will measure $|\eta|$ < 0.9 and 2.5 < $|\eta|$ < 4
- LHCb will measure 2.0 < $|\eta|$ < 5.3

40 41 41

⇒LHCb measurement of σ_{bb} will allow a test of QCD in new region of phase space. • Not really for the very first data ! A rough measurement would be iteresting anyway

J/ψ production studies

Generator studies

- Detailed generator studies on quarkonia production are ongoing.
- First preliminary results give large inconsistency between our standard PYTHIA settings (v 6.3) and version 6.4 where NRQCD model has been introduced for heavy quarkonia production:

 $\sigma(J/\psi \text{ prompt}) \sim 3 \text{ times lower}$

(See M. Bargiotti talk at this workshop for details)

• \Rightarrow even a rough measurement of the ratio of prompt J/ ψ vs J/ ψ from B will be very interesting at the very beginning

sin(2 β) with B⁰ \rightarrow J/ ψ K_S

Expected to be one of the first CP measurements:

- •Demonstrate tagging performance and ability for CP physics
- Sensitivity:
 - LHCb expects ~60k signal events for 0.5 fb⁻¹
 - $\Rightarrow \sigma_{stat}(sin(2\beta)) \sim 0.04$

A_{CP}(t) (background subtracted)

B_s mixing: Δm_s

 $CDF: \Delta m_{s} = 17.33^{+0.42}_{-0.21} \pm 0.07 \quad ps^{-1}$ $D0: 17 < \Delta m_{s} < 21 \, ps^{-1} @ 90\% \, c.l.$

- CDF results with 1 fb⁻¹: 3.7k fully reconstructed $B_s \rightarrow D_s^-\pi^+$, $D_s^-3\pi^-\sigma_{\tau}^-$ 85 fs, $\epsilon D^2 = 5 \%^-\sigma_{\tau}^-$ 85 fs, $\epsilon D^2 = 5 \%^-\sigma_{\tau}^-$ 3 σ significance at Δm_s^- 17 ps⁻¹
- CDF measurement is already statistically very precise (~2%)
- LHCb expects: 120k $B_s \rightarrow D_s - \pi^+$ evts/year (2 fb⁻¹) B/S = 0.4, $\sigma_\tau \sim 40$ fs, $\epsilon D^2 = 9$ %

LHCb can reach Tevatron (statistical...) precision in the first months of data taking. Note also that as $\Delta m_s \sim 17 \text{ ps}^{-1}$, the ultimate σ_τ of LHCb is not essential. Δm_s is in any case needed for ϕ_s measurement

ϕ_s and $\Delta\Gamma_s$ from $B_s \rightarrow J/\psi \phi$

 $\frac{B_{\underline{s}} \rightarrow J/\psi \phi \text{ is the } B_{\underline{s}} \text{ counterpart of}}{\underline{B^0} \rightarrow J/\psi K_{\underline{s}}:}$

• B_s mixing phase ϕ_s is very small in SM: $\phi_s = -\arg(V_{ts}^2) = -2\lambda\eta^2 \sim -0.04$ \Rightarrow sensitive probe for new physics

<u>Sensitivity (at $\Delta m_s = 17.5 \text{ ps}^{-1}$):</u>

• 131k $B_s \rightarrow J/\psi \phi$ signal events/year B/S=0.12

•
$$\sigma_{\text{stat}}(\sin \phi_s) = 0.023$$

•
$$\sigma_{\text{stat}}(\Delta\Gamma_{\text{s}}/\Gamma_{\text{s}}) \sim 0.011$$
 (1 year, 2 fb⁻¹)

Recent theoretical works indicate that large values of ϕ_s are not excluded:

 \Rightarrow already with 0.2 fb⁻¹ set an interesting limit or measure it if large,

J/ $\psi\phi$ final state contains two vectors: angular analysis needed to separate CP-even and CP-odd Fit for sin ϕ_s , $\Delta\Gamma_s$ and CP-odd fraction (needs external Δm_s)

CERN June 6-9 2006

Constraints on NP from ϕ_s measurement

$B_s \rightarrow \mu^+ \mu^-$

Very rare decay, sensitive to new physics

BR ~ 3.5×10^{-9} in SM, can be strongly enhanced in SUSY

Current limit from Tevatron:

- D0: 2.3×10⁻⁷ at 95% CL
- CDF: 1.0×10⁻⁷ at 95% CL

LHCb has prospect for significant measurement but difficult to get reliable estimate of expected background:

Full simulation: 10M incl. bb events + 10M b \rightarrow µ, b \rightarrow µ events (all rejected)

	1 year	$B_s \rightarrow \mu + \mu^-$ signal (SM)	$b \rightarrow \mu, b \rightarrow \mu$ background	Inclusive bb background	All backgrounds
LHCb	2 fb ⁻¹	17	< 100	< 7500	

In principle a (lucky !) measurement is possible already with 0.5 fb⁻¹

Conclusions

- Construction of LHCb is well advanced: we plan to complete the installation by the end of 2006 <u>aiming to have the full detector ready for data in 2007</u>.
- Commisioning strategy is being prepared in detail
- Strategy for calibrations, alignments, trigger and analysis tuning being devised
- Already with the very first data very interesting measurement can be performed: I invite you to follow the startup of our experiment !