

2 The Tevatron legacy and the status of QCD models

3 Measurement Plan at the LHC

- 3.1 The UE as observed in charged jet events
 - 3.2 The UE as observed in D-Y moun pair production

4 Reconstruction of charged tracks

5 Feasibility studies

outline

2 The Tevatron legacy and the status of QCD models

3 Measurement Plan at the LHC

- 3.1 The UE as observed in charged jet events
 - 3.2 The UE as observed in D-Y moun pair production
- 4 Reconstruction of charged tracks
- 5 Feasibility studies
 - 4.1 Measurement of the UE in jet events 4.2 Measurement of the UE in di-muon events

Definition & Models

INFN

Minimum Bias (MB)

Events collected with a completely inclusive trigger

- + generic single proton proton interaction
- + elastic+inelastic, diffractive (100 mb @ THC)

Interactions are:

+ <N_{int}> = L_{inst}*o + low transverse energy

+ low multiplicity

Tevatron \rightarrow 1% of MB/contains a jet with ET>10 GeVLHC \rightarrow it is expected an increase by a factor 10

Note

+ Will be collected only with a triggered event

+ PU is made of MB

Definition & Models

a.,

Underlying Event (DE) Everything except the hard scattering component of the collision

- + Initial and final state radiation
- + Spectators

+ ...?

+ beam-beam remnant

The UE is related to the hard scattering

- + same primary vertex
- + correlated to the energy of the main interaction
- + color and flavor connected

.

Definition & Models

Motivations:

+ New physics discovery needs a deep QCD understanding:
 hard scattering component
 plus the Underlying Event, the softer component of the collision
 + Understanding of the detector

Different models and several implementations Pythia use the Multiple Parton Interactions Model (MPI) more than 1 parton-parton interaction in a single proton-proton collision

- 1 Definition of physics process
- 2 The Tevatron legacy and the status of QCD models

3 Measurement Plan at the LH

- 3.1 The UE as observed in charged jet events
 - 3.2 The UE as observed in D-Y moun pair production
- 4 Reconstruction of charged tracks
- 5 Feasibility studies

CM

pseudo-rapidity n

The measurement plan - UE

From charged jet

Topological structure of p-p collision from charged tracks Charged jet definition -> ICA algorithm with massless charged tracks as input

Organization of the work

New collaboration is born in CMS for UE and MB studies

Florida (D. Acosta, P. Bartalini, R. Field, K. Kotov) generator-level studies reconstruction studies DY

Perugia (F. Ambroglini, L. Fano) reconstruction studies - Charged Jets reconstruction studies - Low PT Tracks

CERN (A. De Roeck) MB trigger

Documentation

The Underlying Event at LHC CMSNOTE 2006/067

P-TDR vol.II, cap.7 section 3

Generator level studies – generators and tuning

Generators setup used (further details in backup slides)

+ Pythia Tune DW

TuneA (ue@cdf) + Z bosor

- + Pythia Tune Atlas (with MP) adopted by CMS
- + Pythia Tune DWT (with PARP(90) of Atlas)
- + HERWIG (without MPI)

Shows the Run 1 Z-boson p_T distribution ($< p_T(Z) > \approx 11.5 \text{ GeV/c}$) compared with PYTHIA Tune DW ($< p_T(Z) > = 11.7 \text{ GeV/c}$).

PY Tune DW and PY Tune A (run 1 tune) predict the same "underlying event" at 1.96 TeV, but Tune DW fits the $P_T(Z)$ distribution.

PY Tune DW and Tune DWT are identical at 1.96 TeV, but Tune DWT uses the ATLAS energy dependence, PARP(90) = 0.16, instead of the Tune A value of 0.25.

2 The Tevatron legacy and the status of QCD models

3 Measurement Plan at the LHC

- 3.1 The UE as observed in charged jet events
 - 3.2 The UE as observed in D-Y moun pair production

4 Reconstruction of charged tracks

5 Feasibility studies

CM

Reconstruction studies – Track Reconstruction

Defined observables heavily relies on tracks and vertex reconstruction performances:

+ verteces identification

Signal vertex and PU identification

+ Particle ID

.

+• PT range achievable

+ efficiency and fake rate estimation

Higher sensitivity to UE and MB observables Energy Flow correction

Which performances will be achievable during the pilot run?

+ presence of PU (there will be...there will be...)
 + some "missing" subdetector (different seeding)
 + misaligned and not completely understood

CM

2 The Tevatron legacy and the status of QCD models

3 Measurement Plan at the LHC

- 3.1 The UE as observed in charged jet events
 - 3.2 The UE as observed in D-Y moun pair production

4 Reconstruction of charged tracks

5 Feasibility studies

Reconstruction studies – charged jet – samples definiton

Datasample used OCD with Low Luminosity Pile Up

How to select MB events? There is no a dedicated trigger (discussions are ongoing)

Several ideas:

 dedicated trigger
 → triggers on π0; crossing triggers, triggers on calo towers, soft jet, forward triggers...

 from other streams
 → using one up interactions (all of them/event)

 Pilot Run:
 *

phase1 (<1 pp/bounch-x) > dedicated MB trigger really needed

PT>120 GeV/c (L1 single jet stream)

For this study:

MB trigger is to have a soft calorimetric jet (PU helps!) We consider 3 different selections: At least 1 calorimetric jet with PT>20 GeV/c (MB trigger) PT>60 GeV/c

Events re-weighted with corresponding x-sec

(error bars dominated by MC statistics, arbitrary luminosity but scaling correctly)

Good RECO/MC agreement in shape

Differences compatible with the expected corrections from charged jet PT calibration, charged tracks innefficiencies and fake rate

Isolated muons no tracks with PT>0.9 GeV in a cone of radius 0.8 in η - ϕ around the muon direction

(see talk from Alexey Drozdetskiy for UE/isolation correlation)

76.9% efficiency for DY-muon pairs

No QCD events passing these isolation cuts found (total statistics of 4M)

Conclusions and Next

UE studies

+ better definition of the sensible transverse region (selecting topological well identified final states)
+ tuning for the collaboration
+ can we define a common framework EHC/HERA? next talk from Zeus.

Track Reconstruction: +strong interaction with the Energy Flow

Pythia 6.3 Tuning (on summer): + it is possible to have a MB/UE tuning? + use also data from RHIC

Conclusions and Next

Work is ongoing for Pilot-run:

- + define LHC conditions
- + define the Experiments conditions
 - + track reconstruction performances
 - + not final detector
 - + different magnetic field conditions

+ define the trigger startegy for startup (it also depends on 1 and 2)

Then we can start:

+ first measurements UE/MB related (occupancy, charge density...)

+ commissioning and detector tuning

+ MC tuning and new inut for OCD models(!)

References:

MC Tuning:

LHCb (Pythia6.134) [P. Bartalini et al., CERN 2000-004] CDF (Pythia6.206) [R. Field et al., PRD 65 (2003) 092002] ATLAS (Pythia6.214)[A.M.Moraes et al., hep-ph/0403100]

UE/MB ATLAS:

Comparison of predictions for minimum bias event generators and consequences for ATLAS radiation background.

Moraes, Dawson, Buttar, ATL-PHYS-2003-013

Minimum bias and the underlying event: Towards the LHC Dawson, Buttar, Moraes, Czech. J. Phys.: 54 (2004)

Prediction for Minimum Bias and the Underlying Event at LHC energies Moraes, Buttar, Dawson, ATL-PHYS-PUB-2005-007

UE/MB CMS:

The Underlying Event at LHC D. Acosta, F. Ambroglini, P. Bartalini, A. De Roeck, L. Fano', R. Field, K. Kotov, CMSNOTE 2006/067

P-TDR vol.II, cap.7 section 3

Reconstruction studies – Track Reconstruction

INFN

Results are given, in this talk, just for QCD bin 70_90/*

```
Seed comes from the CombinatorialSeedGenerator
Trajectory comes from CombinatorialTrackFinder
```

The track finder is optimized for tracks PT>900 MeV/c

We setup a different set of thresholds and quality cuts in order to reconstruct tracks with PT>/5/00 MeV/c

PT_seed>0.5 PT_track reco >0.5

And we require:

+ at least 5 hits
+ no missing hits if the track is reconstructed with 5 or 6 hits
+ chi2/ndof < 5
+ abs(ip_1 - PVZ) < 1 mm and abs(ip_T - PVT) < 500 um

To estimate efficiencies and fakes we use as association criteria the number of hits shared between reconstructed and simulated tracks (at least 50%)