

SEE testing of the LHC Beam Interlock System

BT/BP/RS AB/CO/MI 6th LHC Radiation Workshop 29th November 2007

Testing the Beam Interlock System

1. The Beam Interlock System

- Electrical and Physical Architecture
- Component Locations
- Design for Durability
- Scope of the Tests (CIBD and CIBU)

2. Power Supply Tests and Results

- Detailed Description of the Power Supply
- Test methods
- Test Results

3. User Interface Tests and Results

- Detailed Description of the User Interface
- Test methods
- Test Results

3. Conclusions and Future Focus

- Test Conclusions
- Where do we go from here?

Testing the Beam Interlock System

1. The Beam Interlock System

- Electrical and Physical Architecture
- Component Locations
- Design for Durability
- Scope of the Tests (CIBD and CIBU)

2. Power Supply Tests and Results

- Detailed Description of the Power Supply
- Test methods
- Test Results

3. User Interface Tests and Results

- Detailed Description of the User Interface
- Test methods
- Test Results

3. Conclusions and Future Focus

- Test Conclusions
- Where do we go from here?

USER SYSTEM rack

"some radiation"

Worst = UJ76-type

In INTERLOCK rack

"negligible radiation"

Typical background at Sea Level

Critical Function separate (fewer critical circuits)
 Failure Modes Analysis (weaknesses designed out)

 Xilinx CPLD proven (AB/PO)
 5V and redundant PSU (Highly Available)
 Mature Electronics (Not risky!)

 Electro-Magnetic Compatibility (key issue from start)

= robust design reliability and rad tolerance seem linked!

-running 1/4 LHC system in SPS for nearly 2 years $\textcircled{\sc op}$

Motivations for the Tests

The Beam Interlock Controller (x17 in LHC) -few in surface buildings -most in zones considered 'negligible radiation' -one in control room -VME Chassis can be moved to surface if ever there is a problem -any problem will result in safe failure by design VME is the basis = Not going to Test

> The User Interface (x130 in LHC) -Goes where the User System is "UJ76" We have to Test

The User Interface Power Supply (x260 in LHC) -Goes where the User Interface is "UJ76" We have to Test

-accumulated dose? User Systems will have the same problem! -need to know the limits -POWER SUPPLY only total dose is interesting

Typical Hardware

User Interface

BIC (Front) TT40

BIC (Rear) TT40

Testing the Beam Interlock System

- 1. The Beam Interlock System
 - Electrical and Physical Architecture
 - Component Locations
 - Design for Durability
 - Scope of the Tests (CIBD and CIBU)

2. Power Supply Tests and Results

- Detailed Description of the Power Supply
- Test methods
- Test Results
- 3. User Interface Tests and Results
 - Detailed Description of the User Interface
 - Test methods
 - Test Results

3. Conclusions and Future Focus

- Test Conclusions
- Where do we go from here?

Tracopower TXL-025-25S 5V, 5A, 25W

Device housed in shielded conductive case

Reliability analysis = redundant PSU = good Availability

- Decoupling diode added
- +3% trim to accommodate V_{diode}

5A Fuse added on input

EMC Tests done with CIBU/CIBD configuration - Very good results https://edms.cern.ch/document/762174/

Not the cheapest, but Tracopower have a great reputation (AB/PO) Very complete datasheets

Radiation levels at the electronic rack positions at IR7 (average values for the racks situated on the ground floor). The statistical error is ≤20%.

	Dose (Gy/y)	Hadrons $> 20 \text{ MeV} (\text{cm}^{-2}/\text{y})$	1 MeVeq. flux (cm ⁻² /y)
UJ76	0.5	8_10 ⁸	2 _10 ⁹
RR73/77	0.3	1_10 ⁸	6_10 ⁸

PROSPERO 235U core and a 238U reflector "Displacement Damage Test"

NEUTRONS Energy = 1MeV Fluence = 1E12 n/cm² =Several 10's Years LHC

PSU well protected -PSU 25W, we need <5W Degradation is expected & planned for

<1% Voltage change And CIBU OK down to 4.5V (guaranteed by design)

Testing the Beam Interlock System

- 1. The Beam Interlock System
 - Electrical and Physical Architecture
 - Component Locations
 - Design for Durability
 - Scope of the Tests (CIBD and CIBU)

2. Power Supply Tests and Results

- Detailed Description of the Power Supply
- Test methods
- Test Results

3. User Interface Tests and Results

- Detailed Description of the User Interface
- Test methods
- Test Results

3. Conclusions and Future Focus

- Test Conclusions
- Where do we go from here?

Device housed in conductive case with Burndy Connectors -great EMC -good reliability from connectors (AB/PO already use these)

Completely 5V -good reliability (more resistance to perturbation)

> Classic 7400 Series -mature technology -wide support

Current Loop inputs -accommodate many different types of User System -DESY input circuit (M. Werner)

> RS485 Outputs -Good integrity -Mature Technology

9500 Xilinx CPLD for TEST and MONITOR -Manchester frames (Used General Machine Timing as a basis) -excellent dependability (AB/PO already use these) -Not susceptible to program corruption

> 100% remotely testable 100% remotely monitorable

User Interface Specification

Projet/	CIPU						NAME	TEL	DATE
Project	ject CIBU					BM	Г		
Ensemble/	Controls Interlocks Beam User (CIBU) 2005					BM	Т		1 Jan 2006
Set						y Mar	tin Christophe		
Sous-ensemble/	mble/ SILK TOP File EXT : SET				NODA				
Underset					NCOB				
	Drawing Number	EDMS					LHC		
(CERN)	CIBU 3v1								
AB/CO/IN	LABORATOIRE EUROPEEN POUR LA PHYSIQUE DES PARTI EUROPEAN LABORATORY FOR PARTICLE PHYSICS GENEVE / GENEVA	CULES	ECHELLE/ SCALE	1/	1			INDICE	

Projet/	CIRU		NAME	TEL	DATE		
Project	СІВО	Reep	BMT				
Ensemble/	Cantrolo Interlocka Roam Llass		Designer	BMT		1 Jan 2006	
Set	Controls Interlocks Beam Oser	Drown by	Martin Christophe				
Sous-ensemble/	SILK TOP		CET	NODA			
Underset	SILK TOP FILE EXT : SET						
	Drawing Number	EDMS			LHC		
(CERN)	CIBU 3v1						
AB/CO/IN	LABORATOIRE EUROPEEN POUR LA PHYSIQUE DES PARTIC EUROPEAN LABORATORY FOR PARTICLE PHYSICS GENEVE / GENEVA	ULES ECHELLE/ SCALE	1/	1		INDICE	

Projet/	CIRLI	CIPU					NAME	TEL	DATE
Project	CIBO					BM	Т		
Ensemble/	Cantrola Interlegica Baam Line	Designer	BM	т		1 Jan 2006			
Set	Controls Interlocks Bearn User (CIBU) 2005					/ Ma	rtin Christophe		
Sous-ensemble/	SILK TOP			CET	NODA				
Underset	SILK TOP FILE EXT : SE				NCOB				
	Drawing Number EDMS						LHC		
	CIBU 3v1								
AB/CO/IN	LABORATOIRE EUROPEEN POUR LA PHYSIQUE DES PART EUROPEAN LABORATORY FOR PARTICLE PHYSICS GENEVE / GENEVA	CULES	ECHELLE/ SCALE	1/	1			INDICE	

Projet/	CIRU						NAME	TEL	DATE
Project							Т		
Ensemble/	Quetesta la tarta da Duerra Ularra (QIDUI) 2005					BM	т		1 Jan 2006
Set	Controls Interlocks Beam User (CIBU) 2005				Drown by	Mar	rtin Christophe		
Sous-ensemble/	SILK TOP			CET	NODA				
Underset	SILK TOP FILE EXT : SET				NODB				
	Drawing Number	EDMS					LHC		
(CERN)	CIBU 3v1								
AB/CO/IN	LABORATOIRE EUROPEEN POUR LA PHYSIQUE DES PARTI EUROPEAN LABORATORY FOR PARTICLE PHYSICS GENEVE / GENEVA	ICULES	ECHELLE/ SCALE	1/	1			INDICE	

All use the SAME electronic circuit! It's repeated four times

Projet/	CIPU						NAME	TEL	DATE
Project	СІВО	Reep	BM	т					
Ensemble/	Cantrolo Interlocka Baam Lloo	Designer	r BM	Т		1 Jan 2006			
Set	Controis Interlocks Beam User (CIBU) 2005					y Ma	rtin Christophe		
Sous-ensemble/	SILK TOP			CET	NODA				
Underset	SILK TOP FILE EXT : SET				NODB				
	Drawing Number	EDMS					LHC		
	CIBU 3v1								
AB/CO/IN	LABORATOIRE EUROPEEN POUR LA PHYSIQUE DES PARTI EUROPEAN LABORATORY FOR PARTICLE PHYSICS GENEVE / GENEVA	CULES	ECHELLE/ SCALE	1/	1			INDICE	

USER PERMIT Paths

The mission critical function for the CIBU;

-relay USER_PERMIT correctly

Nothing else! All the BLACK lines are critical!

The mission critical function for the CIBU;

-relay USER_PERMIT correctly

We MEASURE all board current consumptions! PERMIT A [mA] ... PERMIT B [mA] ... CIBU [mA]

Beam Interlock System

1. Cycle USER PERMIT A

- 1. Cycle USER PERMIT A
- 2. Cycle USER PERMIT B

User Interface Under Test

- 1. Cycle USER PERMIT A
- 2. Cycle USER PERMIT B
- 3. Cycle BEAM PERMIT INFO

Test Sequence During Irradiation

5 steps, every two seconds we move to the next step, then repeat...

- 1. Cycle USER PERMIT A
- 2. Cycle USER PERMIT B
- 3. Cycle BEAM PERMIT INFO
 - 4. Internal TEST PERMIT A

User Interface Under Test

Test Sequence During Irradiation

5 steps, every two seconds we move to the next step, then repeat...

- 1. Cycle USER PERMIT A
- 2. Cycle USER PERMIT B
- 3. Cycle BEAM PERMIT INFO
 - 4. Internal TEST PERMIT A
 - 5. Internal TEST PERMIT B

- 1. USER_PERMIT Optocoupler
- 2. USER PERMIT Current Regulation Circuit
 - 3. USER PERMIT RS485 Driver
 - 4. USER PERMIT Schmidt Trigger
 - 5. The WHOLE CIBU

Irradiation Parameters 60MeV Protons - OPTIS at PSI $15MeV/cm^2/mg in SiO_2 - can cause SEE in plastic packages$ N.B. 1 x 10¹¹ protons cm⁻² equivalent to 140 Gy

"Representative of LHC Environment" – F. Faccio, M. Muhtinen

iation levels	at the electroni the grou	c rack positions at IR7 (average and floor). The statistical error i	e values for the racks situated s ≤20%.
1	Dose (Gy/y)	Hadrons $> 20 \text{ MeV} (\text{cm}^{-2}/\text{y})$	1 MeVeq. flux (cm ⁻² /y)
UJ76	0.5	8 _10 ⁸	2 _10 ⁹
RR73/77	0.3	1_10 ⁸	6_10 ⁸

Received a TOTAL DOSE of 62 Gy = $4.8 \times 10^{10} \text{ pcm}^{-2}$

10 Glitches observed – observation window open only ¼ of test - 40 assumed.

Cross Section = 8.3×10^{-10} for Optocoupler Glitches

Test 1: User Permit Glitches versus Total Dose

usual transition times were observed during the test

~3.6us delay for TRUE to FALSE

~0.6us delay for FALSE to TRUE

Test 1: User Permit Transition Time versus Total Dose

Total Dose [Gray]

Test 2 – The Current Regulator

Received a TOTAL DOSE of about 120 Gy

NO Glitches observed

Current regulation drifted by about 4%

Test 2: User Permit Current Regulation versus Total Dose

Received a TOTAL DOSE of 496 Gy

NO Glitches observed, No FALSE Transistions

FAILED SAFE at 496 Gy, power cycle restored operation

Test 3: User Permit Transition Time Versus Total Dose

FAIL SAFE at 496 Gy

Received a TOTAL DOSE of 1000 Gy (then experiment halted)

NO Glitches observed, NO FALSE transitions

Test 4: User Permit Transition Time versus Total Dose

Two PCBs tested

~140-160Gy - CPLD stopped sending data frames

Monitor Communications Failures versus Total Dose

Three PCBs tested at various points

User Interface ID 1 = 180 Gy

User Interface ID:1 Current Consumption Versus Total Dose

Overall Current Consumption

Three PCBs tested at various points

User Interface ID 682 = 1650 Gy

User Interface ID:682 Current Consumption versus Total Dose

Total Dose [Gray]

Overall Current Consumption

Three PCBs tested at various points

User Interface ID 2 = 160 Gy

User Interface ID:2 Current Consumption versus Total Dose

Testing the Beam Interlock System

- 1. The Beam Interlock System
 - Electrical and Physical Architecture
 - Component Locations
 - Design for Durability
 - Scope of the Tests (CIBD and CIBU)

2. Power Supply Tests and Results

- Detailed Description of the Power Supply
- Test methods
- Test Results

3. User Interface Tests and Results

- Detailed Description of the User Interface
- Test methods
- Test Results

3. Conclusions and Future Focus

- Test Conclusions
- Where do we go from here?

Critical Path of Beam Interlock System

- 8.3×10^{-10} Cross-Section for Glitches = use 1.6us GLITCH FILTER!
 - Good radiation tolerance
 - CPLD failed first at 150Gy only for MONITORING
 - BUT once we got it back here reprogrammed it and it worked!
 - Will monitor Glitch counters to indicate potential problems

Have plans for RAD HARD CIBU but they're on hold

- Needs motivation, time and money! (\$)
- VME is weak? move BICs to 'surface' (\$\$\$)
- Critical Matrix CPLD is same as in CIBU (3.3V variant)
 - VME PSU redundant!

Have researched a RAD HARD BIC (not including VME) Needs motivation, time and lots of money (\$\$\$\$)

USER_PERMIT SEE Glitch Filter

If USER_PERMIT FALSE for <=1.6us then it's IGNORED!

= NO BEAM ABORT

If USER_PERMIT FALSE for >1.6us then it's ACCEPTED!

= BEAM ABORT

-it was a LOT of effort to get the tests organised

- -Thanks to Thijs Wijnands / Christophe Martin et al. for all the great work -additional tests won't need as much effort
 - after LHC beam commissioning started we could do some more!

- If we feel it's necessary:

Optical Transmission Board... (CIBO) Fibre Extended User Interface (CIBFU/CIBFC) VME Equipment (find the weaknesses?)

We should plan some beam time next year. NOT a priority for LHC

"Better the devil you know"

FIN

Tracopower TXL-025-25S

Hold-up time

20 ms min.

INPUT VOLTAGE fails or glitches = OUTPUT VOLTAGE maintained

Reliability /calculated MTBF (MII-HDBK-217F)

>250'000 h @ 25 °C typ.

Mean Time Between Failures = several years

. · ·	, ,	2 T
Electromagnetic compatibility	y – Conducted input RI suppression	EN 55022, class B, FCC part 15, level B
(EMC), Emissions	 Harmonic current emissions 	IEC/EN 61000-3-2, class D (TXL 120/150/220)
		IEC/EN 61000-3-2, class A (others)
	– Flicker	IEC/EN 61000-3-3
Electromagnetic compatibility	y – Electrostatic discharge ESD	IEC/EN 61000-4-2 4 kV / 8 kV
(EMC), Immunity	– RF field immunity	IEC/EN 61000-4-3 3 V/m
·	 Electrical fast transients/burst immunity 	IEC/EN 61000-4-4 1 kV
	– Surge	IEC/EN 61000-4-5 1 kV / 2 kV
	– Conducted RF	IEC/EN 61000-4-6 3 V/m
	– Magnetic field	IEC/EN 61000-4-8 3 A/m
	– Voltage dip	IEC/EN 61000-4-11
Safety standards		UL 60950-1, IEC 60950-1, EN 60950-1
Safety approval		cUL/UL File E188913

Industrial Device = heavily tested, good conformity

Short Circuit and Over Voltage Protected

Three Year Guarantee

http://indico.cern.ch/conferenceDisplay.py?confld=20366 http://doc.cern.ch//archive/electronic/cern/others/LHB/public/lhcb-2003-049.pdf http://doc.cern.ch//archive/cernrep/2007/2007-001/p547.pdf http://doc.cern.ch//archive/electronic/cern/others/LHC/Note/project-note-385.pdf