

Fraunhofer Institut Naturwissenschaftlich-Technische Trendanalysen

Radiation Tolerant Optical Fibres for LHC Beam Instrumentation

Radiation Effects

T. Wijnands[†], L.K. De Jonge[†], J. Kuhnhenn[‡], S. K. Hoeffgen[‡], U. Weinand[‡]

[†]CERN, TS Department [‡] Fraunhofer INT Euskirchen Germany

Silica

- Silica (SiO₂) exists in
 - crystalline form
 - amorphous form (a-SiO₂)
 - (amorphous : no long range order)
- *a-SiO*₂ is easily formed :
 - bond angle can vary by ~70 $^\circ$
 - rotation of bond is nearly free

Silica Optical Fibers

- Fibres are long 'drawn' strands of silica
- Fibre drawing generates additional disorder via
 - irregular arrangements of Si and O in the lattice
 - impurity atoms (such as OH)
- Random structure leads to
 - light scattering
 - light absorption
- Dopants
 - to modify refractive index
 - to modify attenuation spectrum

0=Si-O-O-Si=0

Color defects

- Color defects lead to optical absorption bands
 - Silanonol absorbs at 1380 nm ("water peak")
 (SiOH group from *hydrogen pollution*)
- Radiation creates additional color defects via
 - radiolysis mechanism (ionisation)
 - knock on mechanism (displacement)

Optical fiber loss components

Experimental techniques

Study radiation induced defects via :

- Photoluminescence
- Electron Spin Resonance
- Optical attenuation measurements
 - at fixed wavelengths (here 1310 and 1550 nm)
 - for complete spectrum (here only at beginning/end)

Radiation tests in 1999-2000

Radiation Induced Attenuation (RIA) :

- SM fibre 1330 nm 0.1 dB/km per Gy
- LHC Tunnel (ARCs) : 10 Gy per year

29-30 September 2007

Collimation areas LHC

- Monte Carlo simulations (2005)
 - Fibres exposed to ~10 kGy/year
- Requirement :
 - RIA cannot exceed 6 dB total for BPM analog signals
 - ~500 m fibre length exposed
- \rightarrow This was a reason for concern :
 - 6 dB would be reached in 2.4 days LHC operation
 - For 10 yrs LHC we would need factor 1000 better
 - How about the ducts and blowing with oil ?

Acknowledgement : R. Schmidt

⁶⁰Co irradiation test standard SM LHC fibres

- Material testing for duct blowing technique
- Attenuation at 1310 nm in fibres for tunnel in :
 - Ge-P doped MCVD (Draka NK Cables Ltd)
 - Ge-doped PCVD (Draka Fibre Technology BV)

29-30 September 2007

Optical absorption in standard LHC SM fibres

10

RIA in Ge-doped SM fibres

- In GeO₂ fibres :
 - Ge(0), ..., Ge(3) defects
 - (0,...,3 electrons trapped at O vacancies of Ge-ions)
 - Ge(0) and Ge(3) much lower in concentration compared to Ge(1) and Ge(2)
 - 100-450 nm absorption bands
- Annealing
 - detrapping of the electrons
 - Ge(3) trap is deeper than G(2) and so on
 - Ge(3) gives residual attenuation

E.J. Friebele et al, J. Appl. Phys. Vol. 45 No.8 July 1974

29-30 September 2007

Optical absorption in standard LHC SM fibres

RIA in Ge-P doped SM fibres

- In pure $SiO_2 P_2O_5$ fibres :
 - P1, P2, P3, P4, POHC and S defects observed
 - Absorption via P1 effect dominates <u>at 1450 nm</u> :
 - PO₃²⁻ molecular ions

- Annealing :
 - POHC decrease and PO₃²⁻ increase
 - all others constant

Griscom et al, J. Appl. Phys. Vol. 54 No.7 July 1983

29-30 September 2007

Optical Fibre irradiation tests – Fraunhofer INT

Sample preparation (video)

29-30 September 2007

Screening test at Fraunhofer INT

Radiation Induced attenuation

Standard Ge-doped SM fiber

Radiation hardened F-doped fiber

29-30 September 2007

High Energy Physics irradiation test at CERN

LHC Radiation Test Facility (TCC2)

29-30 September 2007

High Energy Physics Radiation field

29-30 September 2007

High Energy Physics radiation field vs ⁶⁰Co

SM fibres Fujikura Ltd Japan

- Radiation hardening via :
 - F-doping
 - Special manufacturing process
 - H-loading ?

F-doping

What are the positive effects of Fluorine doping?

- Quenches defects absorbing in the short wavelength region
- Breaking of strained bonds (reduction of disorder)
- Increase of band gap energy
- Reduction of glass viscosity

K. Sanada et al , Journal of Non-Cryst. Solids 179 (1994) 339-344

Fluorine contents has an optimum !

29-30 September 2007

Reducing the SiOH impurity

- Silanol (SiOH) absorbs light between 1300-1500 nm
- SiOH is produced via :
 - NBOHC Defect + Hydrogen

 $\equiv Si - O\bullet + \bullet H^{o} \rightarrow \equiv Si - OH$

D.L. Griscom, J. of the Ceramic Soc. Japan, Int Edition Vol.99-903

29-30 September 2007

H – loading technique

- From literature :
 - H₂ doping reduces losses of F-doped silica
 - Large reduction in absorption peak at early stage of irradiation
 - Two staged process :
 - H₂ diffusion into the fibre core
 - Reaction of H₂ with existing defects

K. Sanada et al , Journal of Non-Cryst. Solids 179 (1994) 339-344

Series sample testing (⁶⁰Co) 1310 nm

29-30 September 2007

Series samples testing (60Co) 1310 nm

29-30 September 2007

Conclusions

- Radiation Effects in OF are complex
- RIA in Co-60 and HEP radiation fields comparable
 - radiolysis
 - knock on process
 - particle type
 - particle energy
- F-doped SM fibre Fujikura Ltd shows excellent performance
- QA production lot acceptable
- RIA < 5 dB/km at 1310 nm and 1550 nm (< 1 MGy) unprecedented result – meets LHC BLM specifications !!!
- Further studies are ongoing :
 - What is the role of H?
 - What is the annealing behavior?
 - Spectral shifts ?
- Fibre monitoring in LHC IR3/IR7 is recommended