

CNGS Run 2007: Radiation Issues

Edda Gschwendtner On behalf the CNGS Secondary Beam Working Group

Outline

- CNGS Overview
- Run 2007
- Radiation Issues during the Run
- Expected Radiation Levels
- Summary

CNGS (CERN Neutrino Gran Sasso)

- A long base-line neutrino beam facility (732km)
- send v_{μ} beam produced at CERN
- detect v_{τ} appearance in OPERA experiment at Gran Sasso

 \rightarrow direct proof of v_{μ} - v_{τ} oscillation (appearance experiment)

Task for CERN: produce intense v_{μ} beam towards Gran Sasso

6th LHC Radiation Workshop, 29 November 2007

E. Gschwendtner, AB/ATB

CNGS Proton Beam Parameters

Nominal CNGS beam	
400	
H=12 V=7	
H=0.028 V= 0.016	
0.07 % +/- 20%	
2 separated by 50 ms	
10.5	
2100	
2.4	
2	
5	
hor.: 10 ; vert.: 20	
0.5 mm	
hor.: 0.05; vert.: 0.03	
	Nominal CNGS beam 400 H=12 V=7 H=0.028 V= 0.016 0.07 % +/- 20% 2 2 separated by 50 ms 10.5 2100 2.4 2 5 hor.: 10 ; vert.: 20 0.5 mm hor.: 0.05; vert.: 0.03 0.03

Expected beam performance: 4.5 x 10¹⁹ protons/year on target

CNGS Challenges

- High Intensity, High Energy Proton Beam
 - Tune, tune, tune
 - Induced radioactivity
 - In components, shielding, fluids, etc...
 - Intervention on equipment 'impossible'
 - Remote handling by overhead crane
 - Replace broken equipment, no repair
 - Human intervention only after long 'cooling time'
 - Design of equipment: compromise
 - E.g. horn inner conductor: for neutrino yield: thin tube, for reliability: thick tube

Intense Short Beam Pulses, Small Beam Spot

- Interlock, interlock, interlock
- Thermo mechanical shocks by energy deposition (designing target rods, thin windows, etc...)

→ most challenging zone: Target Chamber (target-horn-reflector)

6th LHC Radiation Workshop, 29 November 2007 E. Gschwendtner, AB/ATB

CNGS Layout

p + C
$$\rightarrow$$
 (interactions) $\rightarrow \pi^+$, K⁺ \rightarrow (decay in flight) $\rightarrow \mu^+$ + ν_{μ}

CNGS Target Chamber

Installation of target magazine (4 in-situ spares)

Installation of Focusing magnet ('Horn')

Muon Monitors

- LHC type Beam Loss Monitors
- Stainless steel cylinder
- Al electrodes, 0.5cm separation
- N₂ gas filling

60cm

• 2x41 fixed monitors + 2x1 movable

Online feedback to neutrino beam quality (sensitivity to any misalignment of beam vs. target vs. horn, horn/reflector currents, etc...) 270cm

25cm

CNGS Run 2007 (17/09-22/10/2007)

Smooth start-up, very good beam performance

- 38 OPERA events in bricks
- More than 400 events from interactions outside OPERA detector

CNGS Run 2007 (17/09-22/10/2007)

- 38 OPERA events in bricks
- More than 400 events from interactions outside OPERA detector
- Successive failures in the ventilation system
 - Strong efforts made by TS/CV to save the situation
- Physics run stopped on Monday 22 October 2007, 5 days ahead of time.
 - Failures in the ventilation system control electronics that blocked switching to access mode in a safe manner
 - \rightarrow intolerable for an INB facility

CNGS Electronics Layout

Incidents of CNGS Ventilation System

6th LHC Radiation Workshop, 29 November 2007

CNGS Radiation Levels Calculations with FLUKA

M. Brugger, A. Ferrari, L.Sarchiapone, AB/ATB

Simulation environment:

- Unified approach for
 - physics (neutrino and muon fluxes),
 - engineering (power deposition),
 - prompt (radiation damage) dose rates
 - residual (maintenance and interventions) dose rates
- Reasonably detailed geometry down to muon pits
 - each BLM simulated in detail
- Service and connection galleries empty
 - no rack, no ventilation unit, no piping, no ducts, no doors, no dividing walls
 - \rightarrow should be conservative
- Common effort of AB/ATB, RP, INFN

Available outputs for radiation:

- Absorbed and equivalent dose maps (prompt and residual)
- High energy hadron fluences
- 1 MeV neutron equivalent fluences (for Si damage)
- Particle spectra at several locations

Expected Dose Levels

Gy/yr for a nominal CNGS year of 4.5 10¹⁹ pot

'Safe' Area for Electronics

Control Equipment in the CNGS Area:

Ventilation System, Crane, Fire Detectors, Transformers, Battery Charger, Switchboard, Ethernet,

Control for Target, Shutter, Decay Tube, Temperature Probes, Horn & Reflector Cooling system, Radiation Detector, Beam Instrumentation (BLMs, TBID, BFCT, BPMs)

Electronics Racks

Battery charger

Transformer

Switchboard

TSG4

Expected Neutron Fluence

1 MeV eq. neutron fluence (cm⁻² yr⁻¹) for a nominal CNGS year of 4.5 10¹⁹ pot

Expected High Energy Hadron Fluence

Energetic (> 20 MeV) hadron fluence (cm⁻² yr⁻¹) for a nominal CNGS year of 4.5 10¹⁹ pot

6th LHC Radiation Workshop, 29 November 2007

Radiation Measurements

- RadMon Monitors (T. Wijnands) X Measurements only during
- TLDs (SC/RP) ■

Measurements only during last day of operation: 7.2.10¹⁶ pot

• PMI detectors (SC/RP) –

6th LHC Radiation Workshop, 29 November 2007

Summary I

- Detailed analysis and comparison between the simulations and measurements ongoing
 - The numbers basically agree:
 - Some better understanding of RadMon monitor sensitivity needed.
- No major changes in simulations (updated geometry) with respect to previous calculations → confirmed by measurements

Summary II

- All installed electronics are COTS (most not even rad hard)
- Nearest completely safe area is ~1000m away
- For much of the electronics there are technical reasons to limit the cable lengths to <100m.
- For MTBF > 1year
 - Area with electronics must be shielded (gain factor >10⁴?!)
 - Or move electronics to storage area and add shielding
 - For both cases:
 - Critical equipment for access must be moved to the surface (mainly ventilation parts)
 - Redundancy and preventive maintenance and actions
 - Radiation monitoring

→ CNGS must be ready for beam on 28 May 2008

Spare Slides

Energetic (> 20 MeV) hadron fluence (cm⁻² yr⁻¹) for a nominal CNGS year of 4.5 10¹⁹ pot: vertical cut along TCV4

M. Brugger, A. Ferrari, L.Sarchiapone, 28.11.07, FLUKA

Example Expected Particle Spectra in TSG4

Neutron (black), photon (purple), and electron (red) spectra in the service gallery

Possible solutions

Possible solutions...

2) use existing tunnel (TSG40) to house all the electronics

 TSG40 is foreseen as garage to store broken horn/reflector/target during the lifetime of the facility.
Alternative storage areas must be found in that case....

CNGS Physics Run 2007

Stop CNGS: non-standard mode of operation (access) not possible in an INB controlled facility

Radiological Issues

- Beam on:
 - < 100Sv/h outside the horn shielding</p>
 - < 2Sv/h in service gallery</p>
- Beam off immediately afterwards
 - 100mSv/h

For intervention: dose rate < 2mSv/intervention (CERN ⁷ rule)

Examples:

- 1 week shutdown to change a motor of the target
- 1 month shutdown to exchange the horn
 - Only possible because most is remotely handled!