
OAI-PMH repositories: Quality
issues regarding metadata and

protocol compliance

OAI4 @ CERN, Geneva, 20 October 2005

Tim Cole (University of Illinois at UC) &
Simeon Warner (Cornell University)

Schedule
9:00 I. Introduction (who we are / scope / objectives / intended outcomes)
9:10 II. Brief review of OAI-PMH concepts & terminology (Simeon)
• Quick refresher on protocol basics
9:30 III. Validation and compliance of an OAI data provider (Simeon)
• Common problems / What to watch out for
• Validation services
• Questions/discussion
10:15 Break
10:30 IV. Disseminating shareable metadata (Tim)
• What makes for good, shareable metadata
• Considering service provider expectations
• Specific recommended best practices
• Questions/discussion
11:15 V. Concluding remarks and wrap-up questions & answers (Tim)
• Including a review of essential resources, software, tools
11:30 Close

Who you are
• 13/24 responses by 2005-10-18T18:00:00Z

• 70% implementing data-provider (45% of those
writing one; overall languages: php, python, java,
perl)

• 70% have experience in metadata creation (of those
100% dc/qdc, 55% other including MARC flavors,
METS, MODS, MAB, LOM). Most plan only to use dc
in OAI, why?

• 40% have harvesting experience (15% lots)
• 84% XML, XSLT and/or W3C Schema experience

(varying some to lots)

What you want ... & what you’ll
get

Tim -- Need XML schemaRDF metadata
Simeon/Tim -- OverallHow to improve repository
Ideas but more advancedRealistic workflow for quality/compliance

Tim - Anything with W3C XML
schema...

New developments in metadata standards
supported by OAI (esp. DC)

Tim - Metadata alone no goodHiding records vs expressing rights
Tim - In general troublesomeHTML tags in metadata?

Tim - Best practices initiativeMetadata practices and future trends

Policy issues + Tim re metadataDealing with granularity in IR software packages

TimGeneral info on metadata formats (oai_dc,
MARC, METS)

Simeon - Schemas/encodingUse of XML

SimeonBest practices for repository implementation,
pitfalls, automatic harvesting

Simeon - Protocol & resource Best practices for OAI identifiers

Simeon - IntroductionGeneral OAI SP and DP information

OAI-PMH: A whistle-stop tour
• Just 20 minutes (19 now) so I’ll be brief...

– I’m happy to answer any specific question though
• Only talking about v2.0, not 1.x (pre 2002)

• Reference:
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

• Help:
oai-implementers list

Service-provider / Data-
provider

r
e
p
o
s
i
t
o
r
y

h
a
r
v
e
s
t
e
r

OAI-PMH
selective harvesting requests:
• datestamp
• set

OAI-PMH records

exposes metadata
pertaining to resources

provides services
using harvested metadata

OAI-PMH provides a way for a service-provider to efficiently keep an
up-to-date copy of (some of) the metadata exposed by a data-provider.
Services can then be built on top of this metadata.

resource

all available metadata
about David item

Dublin Core
metadata

MARC
metadata

DIDL
record records

item <=> identifier

record <=> identifier + metadataPrefix + datestamp

Data model: resource-item-record

set-membership is an
item-level property

Records and identifiers
• In OAI-PMH a record is uniquely identified within

a repository by
identifier + metadataPrefix + datestamp

• identifier here NOT the identifier of resource
– resource identifier goes in metadata record (Tim)
– pick appropriate scheme to make globally unique

(e.g. oai-identifier, info:)
• metadataPrefix codes for a namespace, only

oai_dc can be assumed to tie globally
• datestamp is UTC time of last update in

repository’s granularity (globally meaningful)

•revision of oai-identifier from v1.x

•separate guidelines, both still used with OAI-PMH v2.0

•any new use of oai-identifier should use v2.0
<description>

<oai-identifier xmlns="http://www.openarchives.org/OAI/2.0/oai-identifier"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai-identifier
http://www.openarchives.org/OAI/2.0/oai-identifier.xsd">

<scheme>oai</scheme>
<repositoryIdentifier>oai-stuff.foo.org</repositoryIdentifier>
<delimiter>:</delimiter>
<sampleIdentifier>oai:oai-stuff.foo.org:5324</sampleIdentifier>

</oai-identifier>
</description>

domain based
repository
identifiers

oai-identifier

Six verbs
FunctionVerb

listing of a single recordGetRecord

listing of N recordsListRecords

OAI unique ids contained in
repository

ListIdentifiers

sets defined by repositoryListSets

metadata formats supported by
repository

ListMetadataFormats

description of repositoryIdentify
metadata
about the
repository

harvesting
verbs

Most verbs take arguments: datestamps, sets, id, metadata format
and resumption token (for flow control)

Identify
• Arguments

– none
• Errors

– badArgument - if any argument is given

“Tell me about yourself..”

ListMetadataFormats
• Arguments

– identifier (OPTIONAL)
• Errors

– badArgument - extra or unparsable arguments
– noMetadataFormats - instead of empty reply
– idDoesNotExist - more specific then just

badArgument

“What metadata formats do you support? What
internal names correspond to namespaces?”

ListSets
• Arguments

– resumptionToken (EXCLUSIVE)
• Errors

– badArgument
– badResumptionToken
– noSetHierarchy

“What sets are items organized in, if any? How
are they identified an described?”

ListIdentifiers
• Arguments

– from (OPTIONAL)
– until (OPTIONAL)
– set (OPTIONAL)
– resumptionToken (EXCLUSIVE)
– metadataPrefix (REQUIRED)

• Errors
– badArgument
– cannotDisseminateFormat
– badResumptionToken
– noSetHierarchy
– noRecordsMatch

“What records are available in this set/date-
range/metadata format?”

ListRecords
• Arguments

– from (OPTIONAL)
– until (OPTIONAL)
– set (OPTIONAL)
– resumptionToken (EXCLUSIVE)
– metadataPrefix (REQUIRED)

• Errors
– noRecordsMatch
– cannotDisseminateFormat
– badResumptionToken
– noSetHierarchy
– badArgument

“Give me all the records available in this set/date-
range/metadata format”

GetRecord
• Arguments

– identifier (REQUIRED)
– metadataPrefix (REQUIRED)

• Errors
– badArgument
– cannotDisseminateFormat
– idDoesNotExist

“Give me this specific record from the given
item in the requested format”

Protocol vs periphery
• Protocol

– Protocol document

– oai_dc

• Periphery
– HTTP
– XML
– Extension schemas
– Community

guidelines

OAI-PMH vs HTTP
• clear separation of OAI-PMH and HTTP

– OAI-PMH error handling
• all OK at HTTP level? => 200 OK
• something wrong at OAI-PMH level? => OAI-PMH error

(e.g. badVerb)

– HTTP codes 302, 503, etc. still available to
implementers, but they don’t represent OAI-PMH
events

• (except perhaps in baseURL terminology)

<?xml version="1.0" encoding="UTF-8"?>

<OAI-PMH>

<responseDate>2002-02-08T08:55:46Z</responseDate>

<request verb=“GetRecord”… …>http://arXiv.org/oai2</request>

<GetRecord>

<record>

<header>

<identifier>oai:arXiv:cs/0112017</identifier>

<datestamp>2001-12-14</datestamp>

<setSpec>cs</setSpec>

<setSpec>math</setSpec>

</header>

<metadata>

…..

</metadata>

</record>

</GetRecord>

</OAI-PMH>

Note no HTTP encoding
of the OAI-PMH request

Response with no errors

<?xml version="1.0" encoding="UTF-8"?>

<OAI-PMH>

<responseDate>2002-02-08T08:55:46Z</responseDate>

<request>http://arXiv.org/oai2</request>

<error code=“badVerb”>ShowMe is not a valid OAI-PMH verb</error>

</OAI-PMH>

With errors, only the correct
attributes are echoed in
<request>

Response with error

Datestamp and granularity
• all dates/times are UTC, encoded in ISO8601, Z-

notation:

1999-03-20T20:30:00Z

or just with year, month, day:

1999-03-20

• harvesting granularity
– mandatory support of YYYY-MM-DD
– optional support of YYYY-MM-DDThh:mm:ssZ
– granularity of from and until must be the same

The header contains the set membership of item
<record>

<header>

<identifier>oai:arXiv:cs/0112017</identifier>

<datestamp>2001-12-14</datestamp>

<setSpec>cs</setSpec>

<setSpec>math:FA</setSpec>

</header>

<metadata>

…

</metadata>

</record>

Set membership in header

Super-sets do not need to be included, e.g. no math if math:FA

ListIdentifiers returns headers (should really have been called
ListHeaders)
<?xml version="1.0" encoding="UTF-8"?>

<OAI-PMH>

<responseDate>2002-02-08T08:55:46Z</responseDate>

<request verb=“…” …>http://arXiv.org/oai2</request>
<ListIdentifiers>

<header>
<identifier>oai:arXiv:hep-th/9801001</identifier>
<datestamp>1999-02-23</datestamp>
<setSpec>physic:hep</setSpec>
</header>
<header>
<identifier>oai:arXiv:hep-th/9801002</identifier>
<datestamp>1999-03-20</datestamp>
<setSpec>physic:hep</setSpec>
<setSpec>physic:exp</setSpec>
</header>
……

ListIdentifiers

metadataPrefix and setSpec

• The character set for metadataPrefixand
setSpec is the following set of URL-safe
characters:

A-Z a-z 0-9 - _ . ! ~ * ‘ ()

(defined in the schema pattern match)

Be honest with datestamps!
• A change in the process of dynamic generation of a

metadata format that changes the output really does
mean all records have been updated!

• If you get this wrong, updates will be missed by
incremental harvests

if (internalItemDatestamp >

disseminationInterfaceDatestamp) {
datestamp = internalItemDatestamp

} else {

datestamp = disseminationInterfaceDatestamp
}

Not hiding updates
• OAI-PMH is designed to allow incremental

harvesting
• Updates must be available by the end of the

period of the datestamp assigned, i.e.
– Day granularity => during same day
– Seconds granularity => during same second

• Reason: harvesters need to overlap requests
by just one datestamp interval (one day or
one second)

The only defined use of resumptionToken is as follows:

•a repository must include a resumptionToken element as
part of each response that includes an incomplete list;

•in order to retrieve the next portion of the complete list, the
next request must use the value of that resumptionToken
element as the value of the resumptionToken argument of the
request;

•the response containing the incomplete list that completes
the list must include an empty resumptionToken element.

resumptionToken

State in resumptionTokens
• HTTP is stateless
• resumptionTokens allow state information to

be passed back to the repository to create a
complete list from sequence of incomplete
lists

• EITHER – all state in resumptionToken
• OR – cache result set in repository

Caching the result set
• Repository caches results of initial request,

returns only incomplete list
• resumptionToken does not contain all state

information, it includes:
– a session id
– offset information, necessary for idempotency

• resumptionToken allows repository to return
next incomplete list

• increased complexity due to cache
management
– but a potential performance win

All state in the resumptionToken
• Arrange that remaining items/headers in complete list

response can be specified with a new query and
encode that in resumptionToken

• One simple approach is to return items/headers in id
order and make the new query specify the same
parameters and the last id return (or by date)
– simple to implement, but possibly inefficient

• Can encode parameters very simply:
<resumptionToken>metadataPrefix=oai_dc

from=1999-02-03&until=2002-04-01&

lastid=fghy:45:123</resumptionToken>

resumptionToken &
idempotency

• idempotency of List requests: return same incomplete
list when resumptionToken is re-issued
– while no changes occur in the repository: strict
– while changes occur in the repository: all items with

unchanged datestamp

• Means that harvester can recover from a bad
transmission by repeating request at any point in a
long response sequence

• IMPLICATION: data-provider must accept both the
most recentresumptionToken issued and the
previous one

Flow control
How to respond to a harvester -- normal, too fast and

problematic/bad:

1. HTTP status code 200; response to OAI-PMH request with
a resumptionToken.

2. HTTP status code 503; with the Retry-After header set to an
appropriate value if subsequent request follows too quickly
or if the server is heavily loaded.

3. HTTP status code 403; with an appropriate reason specified
if subsequent requests do not adhere to Retry-After delays.

Error reporting
In general more detail is better…

<error code="badArgument">Illegal argument ‘foo’</error>

<error code="badArgument">Illegal argument ‘bar’</error>

is preferred over:

<error code="badArgument">Illegal arguments ‘foo’, ‘bar’</error>

which is preferred over:

<error code="badArgument">Illegal arguments</error>

Scope of error reporting
• the OAI-PMH error / exception conditions are for OAI-

PMH semantic events
• they are not for situations when:

– the database is down
– a record is malformed

• remember: record = id + datestamp + metadataPrefix
• if you’re missing one of those, you don’t have an OAI record!

– and other conditions that occur outside the OAI scope
• use HTTP codes 500, 503 or other appropriate values to

indicate non-OAI problems

Validation and compliance of
an OAI data provider

(now suitably refreshed on the protocol…)

History of validation
• Validation service launched coincident with

initial protocol release in 2001 (work of Donna
Bergmark, Cornell)

• Updated with release of versions 1.1 and 2.0
(also by Donna Bergmark)

• Revamp to correct some problems in Jan
2004 (Simeon Warner)

• Continued corrections/additions and starting
development of ‘test repository’ now

Registration
• Optional after validation (340 sites, 2005-10-11)

• The are other registries with different policies, most
complete is the UIUC registry run by Tom Habing

 0

 40

 80

 120

 160

 200

 240

2005-012004-012003-01

N
um

be
r

of
 r

eg
is

te
re

d
re

po
si

to
rie

s

Date

Step 1 – Identify response
• Fundamental to protocol, typically first request made

by a harvester
• Check values needed by protocol
• Extract and check adminEmailused by validator
• Insist that baseURL returned in response is identical

to that entered

• Email sent to adminEmailwith code to continue,
avoids DoS attack launched from openarchives site.

Step 2 - the rest
• Get one response from each verb and validate XML

against schema
• Check schema and namespace use, oai_dc use
• Check use of datestamps in ListRecords
• Check responses to bad input conditions.
• Check correct use of resumptionToken (if used)

• INCOMPLETE TESTING -- under gradual
improvement

Common problems (1)
• Analyzed validation 2004 logs for validator:

http://www.openarchives.org/Register/ValidateSite

(paper arXiv:cs.DL/0506010 describes in more detail)

• 1893 requests with sensible baseURL
• 18% no Identify response
• 21% of cases returned invalid XML (Xerces output)
• 7% bad adminEmail, 0.3% bad protocol version
• 24% other errors with Identify -- usually quickly fixed

• 1% excessive (>5 in a row) 503 Retry-after
• 3% no identifiers from ListIdentifiers
• 2.5% no datestamp in sample record - fundamental problem!

Common problems (2)
• 927 completed validation requests
• 34% successful
• 22% errors in handling exception conditions
• 44% other (more serious) errors

Most common errors:
1. Failed schema validation
2. Empty response with known good from and until

3. EmptyresumptionToken to request without resumptionToken
4. Malformed response if identifier isinvalid”id
5. Granularity of earliestDatestamp doesn’t match granularity

value

Validation attempts to success

How hard was it to validate?
• 38% of cases successful first time (often

deployments of standard s/w, e.g. eprints.org)
• Average of ~3 attempts/repository
• Ignore 238 sites with just one attempt (test

sites?). Still 24 sites tried >5 times but never
succeeded.

• 30% of those successful had errors in
exception handling after otherwise OK.

XML / Schema / Namespace
• Primary XML problem is character encoding (later...)
• OAI-PMH response must specify the correct

namespaces and schemaLocations for the OAI-PMH
schema and the oai_dc schema, e.g.

<OAI-PMH xmlns="http://www.openarchives.org/OAI/2.0/"

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/

http://www.openarchives.org/OAI/2.0/OAI-PMH.xsd">

and
<oai_dc:dc xmlns:oai_dc=“http://www.openarchives.org/OAI/2.0/oai_dc/”

xmlns:dc=“http://purl.org/dc/elements/1.1/”

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/

http://www.openarchives.org/OAI/2.0/oai_dc.xsd">

(Hint: just copy from spec.)
• Use standard namespaces and schemas for other

formats where possible

Tricky datestamp and
timezone

• One useful test is to check that a given header/record
is returned when the from and untildates of a
ListIdentifiers/ListRecords are set to its datestamp.

• Second most “popular” error after parsing failures.
• Usually quickly corrected.
• One as yet unsolved case with a DSpace instance in

Australia, operating in a timezone with a half-hour
offset from UTC/GMT. The from and untilmust be set
half a hour off to get the correct record, clearly
broken!

identifier=invalid”id
• The most common responses to this input condition

are:
1. invalid XML returned
2. 500 server error

• Particularly troubling as these case imply
1. lack of systematic parameter checking (should have

checks at least as strict as OAI spec, perhaps more so to
limit to local context)

2. lack of systematic output encoding (plain “ can’t go in an
XML attribute even if one mistakenly wants to include it,
use " instead)

• Such failures are asking for trouble!

XML character encoding (1)
YOU MUST GET IT RIGHT - NO EXCUSES!
• The whole XML framework falls apart if you don’t

have valid character encodings, harvesters will fail.
• OAI-PMH mandates UTF-8.
• UTF-8 is an encoding of Unicode where code points

(characters) above 127 are encoded using multi-byte
sequences.

• The code points for Latin-1 are identical in Unicode
but those above 127 must have special encoding.

• Non ASCII (>127) characters must use either multi-
byte sequences (UTF8) or numeric entities:
e.g. decimal ñ hex ñ
(don’t use ñ for ñ)

XML character encoding (2)
• Enforce correct encoding in output routines - use

libraries if at all possible.
• Allowed code points for XML1.0 (XML1.1 slightly different)

#x9 | #xA | #xD | [#x20-#xD7FF]
[#xE000-#xFFFD] | [#x10000-#x10FFFF]

• These restrictions are tighter than plain
Unicode/UTF8 restrictions. For example, including
either character 15 or the numeric entity will
give illegal XML since the numeric entities are
decoded before parsing.

• BOTTOM LINE: Anyone implementing an OAI-PMH
data-provider should make illegal responses
impossible, irrespective of the input data. Should
probably report internal problems to admin.

Debugging UTF-8 encodings
• One option is a small program I wrote (and have used to

help many data-providers) -- utf8conditioner
(Does not test numeric entities, just UTF-8 with XML
restrictions)

On local CERN workstation:
cd /tmp

cat test/testfile | ./utf8conditioner -x

./utf8conditioner -h for help
Also other test files in test
NSDL harvester uses this code to attempt to clean responses that
cannot be parsed

utf8conditioner (-x)
Example output run on test/testfile with -x flag (output in red):

01: $Id:testfile,v 1.3 2001/08/01 20:59:43 simeon Exp $
02: Test file for utf8conditioner, Simeon Warner 1Aug2001
03: 0xXX are the hex values of the bytes that follow
04: ---
05: valid 2 byte (0xCF 0x8F) <CF><8F>
06: valid 3 byte (0xEF 0x8F 0x8F) <EF><8F><8F>
Line 7, char 323, byte 326: byte 2 isn't continuation: 0xCF 0x61,
restart at 0x61, substituted 0x3F
07: invalid 2 byte (0xCF a) ?a
Line 8, char 359, byte 363: byte 3 isn't continuation: 0xEF 0x81,
0x61, restart at 0x61, substituted 0x3F

08: invalid 3 byte (0xEF 0x81 a) ?a
Line 9, char 395, byte 399: illegal byte: 0xB0, substituted 0x3F
09: illegal byte in UTF-8 (0xB0) ?
Line 10, char 428, byte 432: code not allowed in XML1.0: 0x000B,
substituted 0x3F

10: not allowed in XML (0x0B) ?
11: bye

Excercise
• Go to the UIUC registry and look at the list of

“Repositories Responding”.
• Pick a repository and look through the Identify

response looking for anything unusual.
• Try a few other requests, e.g.

– baseURL?verb=ListMetadataFormats
– baseURL?verb=ListSets
– baseURL?verb=ListRecords&metadataPrefix=oai_dc
– find anything odd?

• Try some bad requests, e.g:
– baseURL
– baseURL?verb=badverb
– baseURL?verb=GetRecord&identifier=bad”id

&metadataPrefix=oai_dc
– do the responses make sense?

Help me help you...
• I investigate and , if necessary, correct all problems

with the OAI validation service that are reported.
– if you are wrong I’ll quote the spec back at you :-)

• Helpful to know about problems with repositories that
were not spotted by the validator.

• If you use OAI-PMH for harvesting, I’d be interested
to know of particular problems with data-providers
that should be checked for, and also that might be
included in the test repository.

Questions / discussion…

(and then coffee and
then Tim’s section)

