Superconducting Cavities: Development/Production

E. Chiaveri SL Division

List of Topics

Brief history Research and Development at CERN Industrial Production Conclusion

Brief History

 In the last two decades many laboratories around the world decided to develop the technology of superconducting accelerating cavities

- to increase the accelerator energy
- to save electricity consumption

Two different technologies: bulk Nb (traditional) and Nb/Cu (niobium film deposited on copper)

> LEP FEST 2000, 10-11 October 2000 Science Symposium

SL-CT/EC/ps 18/9/2000

3

Brief History

- In 1979 R&D on Superconducting RF started
- In 1980 a development programme aiming at the production of coated SC RF cavities was started at CERN
- High purity copper presents at 4.2K a thermal conductivity an order of magnitude higher than the high-purity niobium

Nb/Cu Technology

C. Benvenuti
Ph. Bernard
E. Picasso

Advantages of Nb/Cu technology

- considerably higher stability against quenches
- insensitivity to small magnetic fields
- quality factor (Q) higher than bulk Nb (same frequency and temperature 4.5K)
- cost saving

Problems encountered

- substrate preparation before coating is a major problem
- to avoid "peel-off" of the Nb film any contamination has to be avoided
- A defect of mm² size on the 6 m² surface of a cavity can spoil the RF performance

- Special "recipe" has been developed at CERN
 - chemistry preparation
 - rinsing with high-purity water (18 MΩ)/cm)
 - clean room (class 100) conditions for any critical stage (magnetron installation on cavity, rinsing and drying)
- Equivalent procedure for silicon wafers used for VLSI (Very Large Scale Integration) integrated circuit (surface 20 cm²!!!)

Vacuum vessel special vacuum vessel was designed and developed at CERN to provide high accessibility for all critical parts (RF, HOM, tuners, RF cables etc.)

Vacuum vessel

Industrial Production

LEP Project:

- Three European companies: ANSALDO, CERCA, SIEMENS (now ACCEL)
- Why three companies?
 - Reduce risks associated with the most critical element of LEP2
 - Increase speed of production

Industrial Production

 Major challenge for CERN was to transfer the technology to industrial firms in order to

master different technologies:

- electron beam welding
- ultra-high vacuum
- chemical cleaning
- Nb sputtering
- clean room and high-purity water facilities

Industrial Production

 Problems encountered during industrial production:

surface preparation of copper cavity before the Nb coating
 final assembly of RF module in the

clean room

Industrial Production

Solutions to the problems:

- for surface preparation:
 - very precise quality control procedure
- for final assembly:
 - sequence of precise procedures and development of a special behavioural "culture" for clean room technique

LEP FEST 2000, 10-11 October 2000

Science Symposium

Conclusions

 Cavity production for the LEP2 project (niobium on copper) can be considered a great technological success, fruit of the excellent collaboration between CERN and European industry

Conclusion

I would like to stress that the new technology has attained sufficient maturity to make it attractive for future applications.

Conclusions

The superconducting cavities would not be an industrial reality without the technical competence and strong motivation of all CERN technical staff involved.