

Results from the OPAL Experiment

Richard Hemingway IPP/Carleton University On behalf of the OPAL Collaboration LEP Fest, 10th October 2000

- Introductory Remarks
 Luminosity .. Y2K Data
- Physics Results
 - PRELIMINARY LEP2, including $\sqrt{s} >$ 202 GeV
 - Standard Model cross-sections and couplings
 - Indirect limits on new physics
 - Search for SM and MSSM Higgs
 - Searches for new particles
- Where do we go from here?

30 minutes is too short to give adequate recognition to the

intensive work over the past few weeks (months) (years) ..

Please consult our public web site

'The OPAL experiment at LEP' http://opal.web.cern.ch/Opal/PPwelcome.html

where you will find all OPAL physics results and, in particular, 3 Collective Physics Notes prepared for this LEP Fest

- Measurement of Standard Model Processes in e+e-Collisions at $\sqrt{s}>$ 202 GeV
- Updated Results of Higgs Boson Searches in e+e-Collisions at the Highest LEP Energies
- New Particle Searches in e+e- Collisions at \sqrt{s} = 200-209 GeV

Special People .. Many Thanks

- OPAL Spokesmen
 - Aldo Michelini, early beginnings 1993
 Design, construction, installation, exploitation LEP1
 - Rolf Heuer, 1994 mid 1998
 LEP1 to LEP2 transition, precision physics
 - Dave Plane, mid 1998 present
 LEP2 highest energies/luminosities
- OPAL Secretary
 - Mette Stuwe, early beginnings present

The OPAL Collaboration .. past/present

CANADA

Alberta, Carleton, CRPP/NRC, Montreal, UBC, Victoria

- FRANCE Saclay
- GERMANY

Aachen, Bonn, Freiburg, Hamburg/DESY, Heidelberg, LMU-Munich, MPI-Munich

• HUNGARY

Budapest, Debrecen

- ISRAEL Technion, Tel Aviv, Weizmann
- ITALY Bologna
- JAPAN ICEPP-Tokyo/Kobe
- CERN
- UK

Birmingham, Brunel, Cambridge, Manchester, QMW, RAL, UCL/Birkbeck

• USA

Chicago, Duke, Indiana, Maryland, Oregon, Riverside, Yale

OPAL Luminosity Summary

 Special thanks to the LEP Division and all the technical staff associated with the LEP program. Each year, 1989-2000, has been great!

Today: Total luminosity recorded in Y2K almost 200 pb $^{-1}$ OPAL data taking efficiency in Y2K = 92%

OPAL Data Quality

• Calibration procedures for OPAL have maintained steady and robust resolutions throughout the LEP2 period

A Bhabha event at 209 GeV

- 10 August 2000, LEP sets energy record at 209 GeV
- Run lasted less than 2 minutes. Pity! 80 nb^{-1}

Standard Model Cross-sections

• from CERN Yellow Report, LEP2 Physics

A Multihadron event at 208 GeV

• One person's signal is another person's background!

Cross-section for hadrons

 separate full-energy annihilation events from Z⁰ radiative return

1478 non-radiative events at \sqrt{s} = 205 GeV 1709 non-radiative events at \sqrt{s} = 207 GeV

Curve is ZFITTER prediction

Cross-section for mu-pairs

 separate full-energy annihilation events from Z⁰ radiative return

211 non-radiative events at
$$\sqrt{s}$$
 = 205 GeV

225 non-radiative events at \sqrt{s} = 207 GeV

Curve is ZFITTER prediction

Forward-backward Asymmetries

• Measure A_{fb} for lepton pairs $\mathrm{e^+e^-}$, $\mu^+\mu^-$, $au^+ au^-$

Curve is BHWIDE (e^+e^-), ZFITTER ($\mu^+\mu^-$, $\tau^+\tau^-$) prediction

Fine Structure Constant

- Use non-radiative cross-sections and asymmetries
- ZFITTER, with all other pars fixed, gives $lpha_{
 m em}(\sqrt{s})$

 $\alpha_{\rm em}(\sqrt{s} = 190.6 \; GeV) = 128.4^{+2.5}_{-2.3}$ (SM: 127.9)

- All QCD observables well represented by PYTHIA, HERWIG
- No evidence for anomalous 4-jet production

Strong Coupling Constant

- Fit distributions of 1-T, M_H, C, B_W, B_T, and y^D₂₃ to NLLA $\mathcal{O}(\alpha_s^2)$ QCD calculations
- Results consistent with running of α_s

 $\alpha_s(\sqrt{s} = 205.9 \ GeV) = 0.107 \pm 0.002 \pm 0.004$

Summary of OPAL measurements of $\alpha_{s}(\mathbf{Q})$

Cross-section for photon-pairs

- A pure QED process at tree level
- At \sqrt{s} =205 GeV events observed/expected = 467/463
- At \sqrt{s} =207 GeV events observed/expected = 534/549

Cross-section for WW-pairs

- Isolate all 3 decay channels WW $\rightarrow q\overline{q}q\overline{q}, q\overline{q}\ell\overline{\nu}_{\ell}, \ell\overline{\nu}_{\ell}\ell\overline{\nu}_{\ell}$
- Cross-sections assume SM W decay fractions

At \sqrt{s} =205 GeV obtain 651, 545, 125 events resp.

At \sqrt{s} =207 GeV obtain 887, 708, 162 events resp.

SM prediction via RACOONWW and YFSWW

$\sigma(e^+e^-\rightarrow W^+W^-)$

A WW \rightarrow qqqq event at 208 GeV

Cross-section for ZZ-pairs

- Isolate decay channels $llll, ll\nu\nu, qqll, qq\nu\nu, qqqq$
- Cross-sections assume SM Z decay fractions

At \sqrt{s} =205 GeV obtain 77 candidates, expected SM bkgd = 37 At \sqrt{s} =207 GeV obtain 85 candidates, expected SM bkgd = 45

No evidence for non-zero neutral TGCs (ZZ γ , ZZZ)

Charged Current TGCs

• Combine WW cross-section and angular distributions with single-W cross-section

No anomalous behaviour: SM values look OK. Obtain limits on CP-violating TGCs via spin density matrix. No evidence for anomalous QGCs, eg WW $\gamma\gamma$.

Precision M $_W$ Measurement

- With 480pb⁻¹ (prior to Y2K) $m_{\rm W} = 80.485 \pm 0.052(stat) \pm 0.039(sys) ~GeV$
- With final statistics, expect

 $m_{\rm W} = 80.xxx \pm 0.040(stat) \pm 0.025(sys) \, GeV$

Data shows no FSI (BEC,CR), $M(qqqqq) = M(qql\nu)$. Emphasise need for good LEP energy determination. Estimate all-LEP error 30-35 MeV (SM indirect = 26 MeV).

Non-SM Physics ...indirect limits

 $f\overline{f}, \gamma\gamma, ZZ, ...$ cross-sections and couplings in agreement with SM. They provide limits on possible new physics (generally model dependent).

- 4-fermion Contact Interactions Mass limits 8-15 TeV with $g^2/4\pi = 1$
- Sneutrino exchange (RPV) in s-channel $\lambda_{131}, \lambda_{121}$ coupling limits within 100-300 GeV range
- Z' exchange in s-channel Exclusion limits in 400-750 GeV range
- QED Λ cut-off parameters in $e^+e^- \rightarrow \gamma\gamma$ Both Λ_+, Λ_- above 330 GeV
- Excited electron in t-channel $\gamma\gamma$ Mass limit $\sim 300~{\rm GeV}$ assuming $e^*e\gamma=ee\gamma$ coupling
- Low scale quantum gravity in $\mu^+\mu^-, \tau^+\tau^-, \gamma\gamma, ZZ$ Mass limits 830-900 GeV

General conclusion: New Physics is far beyond EW scale

Contact Interactions

Limits on possible Z'

Gravity in Extra Dimensions

Standard Model Higgs Decays

Higgs: Individual Channel Mass Distributions

Higgs: Mass Distribution, all Y2K data

Higgs: Mass Distribution, only 207 GeV data

Higgs: 1-CL_b: background-only hypothesis

SM Higgs Mass .. 95% CL lower limit

More Higgs Searches

• SUSY Higgs

• Special Higgs Decays

– Invisible h⁰, eg.
$$ightarrow { ilde \chi}^0_1 { ilde \chi}^0_1$$
: Data=35, Bkgd=53

 $m_{h^0} > 107.2 \; {\rm GeV}$ assuming SM prod rate

– Fermiophobic $h^0
ightarrow \gamma\gamma$: Data=16, Bkgd=19

 $m_{h^0} > 104.6 \text{ GeV}$ assuming SM prod rate

Limits in CMSSM parameter space

 m_h -max: A specific benchmark MSSM scan which provides the most conservative range of excluded tan(β) values.

Search Channel List

$e^+e^- \to hZ$	$h \rightarrow b\overline{b}$	$b\bar{b}q\bar{q}, b\bar{b}\nu\bar{\nu}, b\bar{b}\ell^+\ell^-$
	$ m h ightarrow \gamma \gamma$	$(q\bar{q}, \ell^+\ell^-, \nu\bar{\nu}) + \gamma\gamma$
	$\mathrm{h} ightarrow ilde{\chi}^0 ilde{\chi}^0$	$q\bar{q}, \ell^+\ell^- + \not\!$
$e^+e^- \rightarrow hA$	$h, A \rightarrow b\bar{b}, \tau\tau$	${ m b}ar{ m b}{ m b}ar{ m b}$, ${ m b}ar{ m b} au^+ au^-$
	$h \rightarrow AA$	$bar{b}bar{b}bar{b}$
$e^+e^- \rightarrow H^+H^-$	$\mathrm{H^+} \rightarrow \mathrm{q}\bar{\mathrm{q}}, \tau\nu$	${ m q}ar{ m q}{ m q}ar{ m q}ar{ m q}, { m q}ar{ m q} au u, au u au u$
$e^+e^- \rightarrow \tilde{\chi}^+ \tilde{\chi}^-$	$ ilde{\chi}^- ightarrow \mathrm{W}^* ilde{\chi}^0$	jets (+ ℓ^{\pm}), $\ell^+\ell^-$ + $\not\!$
	(In)Direct RPV	jets, ℓ^\pm , $ u$
	$(ilde{\chi}^0 ightarrow \gamma ilde{ m G})$	jets, $\ell^+\ell^-, \gamma\gamma+ ot\!$
$e^+e^- \rightarrow \tilde{\chi}^0_2 \tilde{\chi}^0_1$	$ ilde{\chi}^0_2 ightarrow { m Z}^0 ilde{\chi}^0_1$	2 jets $+ ot\!$
	$ ilde{\chi}^0_2 o \gamma ilde{\chi}^0_1$	$\gamma + \not\!$
$e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$	$ ilde{\chi}^0_1 ightarrow \gamma { m G}$	$\gamma\gamma + \not\!$
	${ ilde\chi}^0_1$ Lifetime	non-pointing γ
~ ~	RPV Decays	jets, ℓ^{\pm} , $ u$
$e^+e^- \rightarrow \hat{\ell}^+\hat{\ell}^-$	${\hat \ell}^- o \ell^- { ilde \chi}^0_1$	$\ell^+\ell^- + \not\!$
	$(ilde{\chi}^0 o \gamma ilde{ m G})$	$\ell^+\ell^-\gamma\gamma+E$
	(In)Direct RPV	$2,4,6 imes\ell^{\pm}+E$
	$\tilde{\ell}^{\pm}$ Lifetime	Kinked Tracks
		Stable, Charged
$e^+e^- \rightarrow \tilde{\nu}\tilde{\nu}$	(In)Direct RPV	$\ell^+\ell^-\ell^+\ell^-$
		jets $+ E$
${ m e^+e^-} ightarrow { m {\widetilde t}_1 { m {\widetilde t}_1}}$	${ ilde{ m t}_1} ightarrow { m c} { ilde{\chi}_1^0}$	2 jets $+ E$
	${ { ilde t}_1} ightarrow { m b} \ell^+ { ilde u}$	2 jets $+ \ell^+ \ell^- + E$
	(In)Direct RPV	$\ell^+ q \ell^- q$
$e^+e^- \rightarrow N\bar{N}$	$N ightarrow \ell \mathrm{W}$	jets $+\ell^{\pm}$
$e^+e^- \rightarrow L^+L^-$	$L^+ \to \nu \mathrm{W}$	jets, $\ell^{\pm} + E$
$e^+e^- \rightarrow \ell^{*+}\ell^{(*)-}$	$\ell^{*+} o \ell^+ \gamma$	$\ell^+\ell^-\gamma(\gamma)$
$e^+e^- \rightarrow \nu^* \bar{\nu}^*$	$ u^* ightarrow u \gamma$	$\gamma(\gamma) + E$
$e^+e^- \rightarrow \ell^*\ell, \nu^*\nu$	$\ell^* \to \ell Z$	jets, ℓ^\pm , $ u$

Single Photon Recoil Mass

Sensitive to Gravity in Extra Dimensions, GMSB scenarios, eg. $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, and MSSM $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \gamma$, and excited neutrinos, eg. $\nu^* \rightarrow \nu \gamma$.

Standard Model process is $e^+e^- \rightarrow \nu \overline{\nu} \gamma(\gamma)$.

Non-SM Physics ...direct searches

In general a null search provides limits on cross-sections, couplings, masses, ...

- Leptoquarks $e^+e^- \rightarrow L_q \overline{L_q}, L_q \rightarrow lq$ Data=54, Bkgd=55
- Heavy Leptons $e^+e^- \rightarrow N\overline{N}, N \rightarrow lW$ Data=63, Bkgd=51
- Excited Leptons $e^+e^- \rightarrow l^{*+}l^{*-}, l^* \rightarrow l\gamma$ Data=6, Bkgd=4 $e^+e^- \rightarrow l^{*+}l^-, l^* \rightarrow l\gamma$ Data=642, Bkgd=691
- Stable, long-lived, massive particles Sensitive to $Q/e=\pm 1,\pm 2/3$ Data=0, Bkgd=1
- Single top via FCNC $e^+e^- \rightarrow t\overline{c}(\overline{u})$ Data=21, Bkgd=23

$$\begin{split} M(l^*) > 103~GeV\\ M(\tilde{\ell}) > 97~GeV, M(\tilde{\chi}^{\pm}) > 101~GeV, \text{ for long-lived}\\ \sigma_{top} < 0.36~\text{pb, assuming } \text{Br}(t \to bW) = 1 \end{split}$$

Non-SM Physics ...direct SUSY searches

MSSM searches of two types are conducted

(A) MSUGRA, with/without RPC, where LSP = $\tilde{\chi}_1^0$ (stable), which leads to topologies with jets, leptons, AND Missing Energy (B) GMSB, where LSP = $\tilde{G} [\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \tilde{\ell} \rightarrow l \tilde{G}]$, which give MORE leptons and photons

- Scalar Leptons $e^+e^- \rightarrow \tilde{\ell}^+ \tilde{\ell}^-, \tilde{\ell} \rightarrow l \tilde{\chi}_1^0$
- Scalar top/bottom quarks $e^+e^- \rightarrow \tilde{t}\overline{\tilde{t}}, \tilde{t} \rightarrow c\tilde{\chi}_1^0, b\tilde{\chi}^{\pm}$ $e^+e^- \rightarrow \tilde{b}\overline{\tilde{b}}, \tilde{b} \rightarrow b\tilde{\chi}_1^0$
- Charginos $e^+e^- \rightarrow \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}, \tilde{\chi}^{\pm} \rightarrow \tilde{\chi}_1^0 W^{\pm}$
- Neutralinos $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0, \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 Z^0$

No compelling evidence for data in excess of SM bkgd Cross-section limits are determined Calculate exclusion regions in MSSM parameter space

MSSM exclusion limit for stop

MSSM exclusion limit for gauginos

MSSM exclusion limit for neutralino

 $\begin{array}{l} \mbox{Absolute lower limit on lightest neutralino}\\ \mbox{m}_{\tilde{\chi}^0_1} > 39.0 \mbox{ GeV for } \mbox{m}_0 > 500 \mbox{ GeV}\\ \mbox{m}_{\tilde{\chi}^0_1} > 36.0 \mbox{ GeV for any } \mbox{m}_0 \end{array}$

Summary

- OPAL data taking in 2000 very successful $\int \mathcal{L} dt$ almost 200 pb⁻¹
- Many ongoing physics analyses, both LEP1 and LEP2
- All results from LEP data in good agreement with SM predictions.
- We look forward to several years of continuing physics analysis andperhaps, in some forgotten corner, unexpected new physics