L3 Results up to 208 GeV

Maria Novella Kienzle-Focacci Université de Genève

On behalf of the L3 Collaboration

October 10th, 2000

Most of the results are preliminary.

L3 Cosmics

Final result: 10^{10} events, $20 \text{ GeV} \le p_{\mu} \le 2 \text{ TeV}$, <1% stat and 2.5% syst errors.

Accurate measurements necessary for atmospheric ν .

Hadronic $\gamma-Z$ interference term $j_{ m had}^{ m tot}$

Data	j ^{tot} had	M _Z [MeV]		
Z pole	0.44 ± 0.59	91185.2 ± 10.3		
$\sqrt{s} \rightarrow 208 \text{ GeV}$	$\textbf{0.29} \pm \textbf{0.12}$	91188.4 \pm 3.7		
Standard Analysis	0.22 fixed	91189.5 ± 3.1		

 $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

Maria Novella Kienzle-Focacci

 $\begin{array}{ll} \mbox{Limits on deviation from QED}: \\ \Lambda > 1536 \mbox{ GeV } & m_{e^*} > 319 \mbox{ GeV} \\ \mbox{Limits on graviton exchange:} \\ \mbox{M}_{\rm S}(\lambda=+1) > 0.84 \mbox{ TeV} \\ \mbox{M}_{\rm S}(\lambda=-1) > 0.95 \mbox{ TeV} \end{array}$

Maria Novella Kienzle-Focacci

WW and ZZ Production

W Gauge Couplings

WW $\rightarrow q\overline{q}\ell\nu$

172 GeV – 202 GeV data:

qqqq	$80.46 \pm 0.08 \pm 0.07 \text{ GeV}$
$q\overline{q}\ell u$	$80.27 \pm 0.09 \pm 0.05 \text{ GeV}$

Mass difference

 $0.19 \pm 0.12 \pm 0.05$ GeV calculated without FSI systematics

All combined

d 80.375 \pm 0.058 \pm 0.051 GeV

Colour Reconnection

Cross talk in $W^+W^- \rightarrow q\overline{q}q\overline{q}$?

Distribution of identical pions close in phase space:

Q = 4-momentum difference of identical pions.

Fit of the Standard Model to all L3 electro-weak data:

Higgs must be around the corner ! or "New Physics" !

Discriminant variable combining: b-tag, neural network, recoil mass to Z.

> Total luminosity 170.3 pb⁻¹ 82.9 pb⁻¹ for $\sqrt{s} \le 206.5$ GeV 87.4 pb⁻¹ for $\sqrt{s} > 206.5$ GeV

For qqqq selection:

Combining qqqq, qq $\nu\nu$ and all qqll channels

$Q = rac{L(s+b)}{L(b)}$

M_H > 113.2 GeV at 95 % CL expected limit : 111.2 GeV

Combining qqqq, qq $\nu\nu$ and all qqll channels Use mass-independent cuts S/B defined for recoil mass> 109 GeV

L3 preliminary ($\sqrt{s} = 200-209 \text{ GeV}$)

$\sqrt{s}=206.7~{ m GeV}$, S/B =2 , btag = 3.2

5-C fit $e^+e^- \rightarrow HZ$: $M_H = 109.9 \text{ GeV}$ 5-C fit with equal masses : 89.3 GeV

Maria Novella Kienzle-Focacci

An event bbe⁺e⁻

$\sqrt{s}=205.4$ GeV, S/B =2

Preliminary analysis looking for the channels:

Run 868610, Event 378, $\sqrt{s}=206.8~{ m GeV}$

$\sqrt{s}=183-209~{ m GeV}$

Require genuine $e^+e^- \rightarrow qqqq$ events : reduce QCD (qqgg) and W-pair background 5-C fit with equal mass (M) constraint

Excess of events at $\simeq 68$ GeV. Expectation calculated for the reaction $e^+e^- \rightarrow H^+H^-$ with the HZHA Monte Carlo.

 $\sqrt{s}=183-209~{
m GeV}$

The effect (2.7σ above background in 183-202 GeV) increases to 3.6σ

Chargino Searches $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$

ΔM (GeV)	3–10		20–40		> 50		.OR.	
$\sqrt{s}~({ m GeV})$	data	exp	data	exp	data	exp	data	exp
208	0	1.6	2	1.2	0	0.9	2	3.7
205-208	40	35.8	26	27.8	17	19.9	83	83.6

Gaugino like and $M_{ ilde{
u}} > 300~{
m GeV}$: Kinematic Limit reached

$\Delta M < 3~{ m GeV}$

Tag chargino decays with ISR photons

ΔM	\sim 3 GeV		\sim 1 GeV		\sim 0.3 GeV		.OR.	
\sqrt{s} (GeV)	data	exp	data	exp	data	exp	data	exp
205-208	6	5.6	2	2.0	3	1.2	8	6.8

Higgsino Like (CMSSM): Mass limit independent of ΔM

For μ =-200 GeV, $\tan \beta$ =2, $M_{\tilde{\chi}_1^0}$ >15 GeV, ΔM >10 GeV

Indirect limits from slepton, chargino, neutralino: $M_{\tilde{\chi}^0_1} > 39.4~{\rm GeV}$

Search for $ilde{\chi}_1^\pm$, $ilde{\chi}_{J=1,4}^0$ and $ilde{\ell}$

 $\tilde{\chi}_1^0$ is no more stable \rightarrow final states with: many leptons (λ), many jets (λ'') or both (λ').

Including 2000 data: (λ'' only)

Limits on $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$ similar to the one obtained assuming R–Parity conservation

Running $\alpha_{\rm S}$ from 4 event shape variables. QCD fits to $\mathcal{O}(\alpha_{\rm S}^2)$ with resummed LO and NLO terms.

 $\alpha_{\rm S}({\rm M_Z}) = 0.1218 \pm 0.0012({\rm exp}) \pm 0.0061({\rm th})$

Number of active flavours: $5.0 \pm 1.3(exp) \pm 2.0(th)$

Two-Photon Physics

VDM

Direct

Single Resolved

BFKL

 $e^+e^-
ightarrow e^+e^-car{c},\, bar{b}$ X

NLO QCD: $\gamma \gamma
ightarrow q ar q$ (direct) $g \gamma
ightarrow q ar q$ (single resolved)

Test of BFKL models

Test of diquark models for baryon production.

The Standard Model is a wonderful construction...

The San Petronio church in Bologna

... let's complete it! Long life to LHC and to Linear Colliders