Doubly Charmed Baryons in COMPASS

Lars Schmitt Technische Universität München

September 27th 2002

Workshop on Future Physics at COMPASS

- Basics on CCQ
- Experimental Setup
- Trigger Scenario
- Simulations
- Rate Estimates
- Questions and Conclusions

Simulations by Roland Kuhn

SU4 Baryon Multipletts

Masses and Lifetimes

	Likhoded	Tong	Ebert	Roncaglia	Körner	ltoh	Kaur		
Ξ_{cc}	3.48	3.74	3.66	3.66	3.61	3.65	3.71		
Ξ_{cc}^{*}	3.61	3.86	3.81	3.74	3.68	3.73	3.79		
Ω_{cc}	3.59	3.76	3.76	3.74	3.71	3.75	3.89		
Ω_{cc}^{*}	3.69	3.90	3.89	3.82	3.76	3.83	3.91		
Manageria									

Masses in GeV

	Ξ_{cc}^{++}	Ξ_{cc}^+	Ω_{cc}^+				
au, ps	0.46 ± 0.05	0.16 ± 0.05	0.27 ± 0.06				

Lifetimes in ps

Hadronic decay channels

$\Xi_{cc}^+ ightarrow$	$\Lambda_c^+ K^- \pi^+$	(3%)	$\Omega_{cc}^+ o$	$\Omega_c^0\pi^+$	(5%)
	$D^+\Lambda$	(2.5%)		$\Omega_c^0\pi^+\pi^+\pi^-$	(4%)
	$\Xi_c^+\pi^+\pi^-$	(2%)		$\Xi_c^0 K^- \pi^+ \pi^+$	(4%)
	$\Xi_c^0 \pi^+$	(1.5%)		$\Xi^- D^+ \pi^+$	(2%)
	D^+K^-p	(1%)		$\Xi_c^+ K^- \pi^+$	(1.5%
$\Xi_{cc}^{++} \rightarrow$	$D^0\Lambda\pi^+\pi^+$	(5%)	$\Omega_{ccc}^{++} ightarrow$	$\Omega_{cc}^+\pi^+$	(5.5%
	$\Lambda_c^+ K^- \pi^+ \pi^+$	(5%)		$\Xi_{cc}^+ K^- \pi^+ \pi^+$	(5%)
	$\Xi_c^{ m 0}\pi^+\pi^+$	(4.5%)		$\Xi_{cc}^{++}K^{-}\pi^{+}$	(2.5%
	$D^{+}\Lambda\pi^{+}$	(3%)			-
	$\Xi_c^+\pi^+$	(1.5%)			

Measurements

SELEX (FNAL E781): $\Xi_{cc}^+ \rightarrow \Lambda_c^+ K^- \pi^+$, 15.9 events, m=3519 MeV, $\tau < 33$ fs (90% CL)

Experimental Setup

Target Region

- Silicon/SciFi for beam definition
- Segmented target, 2% λ_{int}
- Silicon vertex telescope
- \rightarrow study resolution
- SciFi for track multiplicity trigger and timing

- Charm decay within detector array (mostly *D*'s)
- Trigger on multiplicity jump, charm track (2nd level)
- \rightarrow cf. secondary vertex trigger
- More difficult

Vertex Detector

Detector requirements

- Fluences up to $5\times 10^{14}~\text{ptc/cm}^2$
- Resolution $\sim 100 \mu \text{m}$
- Good timing resolution ($\sim 2 \text{ ns}$)

Detector optimisation

- Monolithic target-vertex-cryostat
- Pitch size (25 μ m vs 50 μ m)
- Lever arm vs. acceptance

Readout and triggering

- Readout speed up to 100 kHz
- ADC for resolution, timing, sec. interactions
- 2nd/3rd level trigger information

Trigger Scenario

Starting point: 2×10^6 int. per spill

First Level Trigger

- Simple track multiplicities > 4
- \rightarrow SciFi for fast counting
- \rightarrow factor 2 $\varepsilon = 100\%$
- Transverse energy E_T cut 3-5 GeV
- \rightarrow ECAL1/HCAL1 sufficient
- \rightarrow factor 3–5, $\varepsilon = 70 55\%$
- Muon trigger from semi.lept. D decays
- \rightarrow MF1 hodoscopes similar to DIS MF2
- ightarrow factor 30, arepsilon=10%
 - Envisage OR of $N \times E_T(med) \times \mu$ and $N \times E_T(hi)$

Total reduction: factor 4–10 at $\varepsilon \sim 60\%$

Next step: 2×10^5 triggers per spill

Second/Third Level Trigger

- Detector: Frontend
 - Hit multiplicity
 - Suppression of sec. interactions
 - Decay detector: mult. jump
- Tracks: Super ROB / 2nd level
 - Track angles
 - Track multiplicity
 - High impact tracks
- Vertex: Super ROB / 3rd level farm
 - Secondary vertex
 - Vertex separation
- PID: 3rd level farm
 - RICH reconstruction
 - Secondary tags (K^0 , Λ , Ξ etc.)

Transverse Energy

- High charm mass \rightarrow high *Q*-value, high p_T tracks
- Simulation of charm shows many tracks with high p_T
- $\rightarrow\,$ transverse energy from long decay chains
 - Used e.g. by E791 (rather soft) and E831 at FNAL

Multiplicities and Muon Trigger

Multiplicity cut as high as 10!

- Trigger on muon from semileptonic *D* decays $BR(D^0 \rightarrow \mu X)=7\%$, $BR(D^+ \rightarrow \mu X)=10\%$,
- Strong reduction from σ_{tot} (1/30)
- p_T cut possible

Online Filter Schemes

Filtering on EVBs:

- 12–16 dual CPU PCs
- At 40 kHz: 2-3 ms/evt
- → little room for complicated tasks

Frontend Preprocessing:

SGADC++, GeSiCA++

- Clusters
- Timing cuts
- Hit multiplicities
- Secondary interaction (second threshold)

Super ROB / 2nd level:

Quad-CPU, DSP coprocessors

- Track multiplicities
- High impact tracks
- DATE EDM

Filter Farm:

Server blades, \sim 300 CPUs

- Topical reconstruction:
- Secondary vertizes
- Decay tags
- RICH reconstruction

Based on SELEX Channel:

 $\Xi_{cc}^+ o \Lambda_c^+ K^- \pi^+$ with associated $ar{D}^0$ and D^-

Production parameters:

$$\sigma \sim (1 - x_F)^3$$
$$\sigma \sim exp(-1.2p_t^2)$$

COMGEANT Setup:

- Downstream part as for DIS
- SM1 field map for 132 cm
- \rightarrow go to 82 cm when available
- Target setup as shown
- \rightarrow room for optimisation

Assumptions and Cuts:

- SELEX lifetime $\tau(\Xi_{cc}^+) \sim 25$ fs
- Main GEANT cuts at 100 MeV
- No RICH simulation, only thresholds, but PID for all *K*'s and proton
- Require any secondary vertex outside target

Acceptance and Resolution

Geometrical acceptance and tracking capability: 5%

Momenta and track efficiencies

Lars Schmitt, TU München

Trigger Efficiencies

Muon trigger: $\mu > 2 \text{ GeV}$ Charm/Fritiof : 29.5% / 11.7%Multiplicity trigger: more than 10 charged tracks100% / 85%1st level trigger: Multiplicity $\wedge ((E_T > 5.8 \text{GeV}) \lor (E_T > 5.8 \text{GeV} \land \mu))$ 57.7% / 20%2nd level trigger: Some vertex activity41.5% / 4.6%

Rate Estimates

Beam rate: 10⁸/spill

- **Target:** 2% λ_{int} 10¹² interactions in 100 d
- Luminosity $\int \mathscr{L} = 250 \text{ pb}^{-1}$

Based on SELEX:

- From 1600 Λ_c get 50 CCQ
- Considering cuts and BR: 50% of Λ_c from CCQ
- \rightarrow assume: $\sigma(CCQ) \sim 1 \ \mu b$
- \rightarrow produce: 250 Mio.

Simulation and BR:

• Detectable channels for CCQ and \rightarrow produce: 2.5 Mio. daughters: $10\% \times 20\% = 2\%$

- Acceptance × Trigger = 0.8%
- Reconstruction × vertex separation = 20-40 %
- \rightarrow detect: 8000–16000

This scenario would allow CCOspectroscopy

Pessimistic estimate

- $\sigma(CCQ) \sim \sigma_{tot} \times (10^{-3})^2$
- i.e. factor 1000 down from σ_c
- ightarrow assume: $\sigma({\it CCQ})\sim~10~{\rm nb}$
- - \rightarrow detect: 80-160

Open Questions

- Optimized setup: vertex detector, spectrometer, trigger detectors
- Design work needed
- Studies of trigger eff., reduction factors:
- \rightarrow rejection of minimum bias from data
 - More simulation studies
 - Best filter algorithm
 - Cross section and production mechanism
 - Double charm or single charm plus double charm bonus?

Conclusions

Charm physics in COMPASS

- Hardware requirements
 - Good vertex detector
 - ECAL1/HCAL1 for E_T trigger
 - Muon hodoscope in first spectrometer
 - RICH 2 helps
- Trigger requirements
 - First level trigger is achievable:
 - \rightarrow Multiplicity, E_T , muons
 - Filter farm and maybe second level (Super ROB) needed
- Double charm in particular:
 - Even higher E_T and multiplicities
 - Momenta in average lower
 - Cross sections and lifetimes are still a question mark