

Sergey Donskov, IHEP, Protvino Future Physics @ COMPASS, CERN, September 2002

1. Physical motivation

- 2. Experimental Layout
- **3. Simulation results**

4. Conclusion

COMPASS

Central production of Exotics

QCD predict existence of glueballs, bound states of mainly gluons. The best estimate for masses of glueballs comes from lattice gauge theory.

The lightest glueball has $J^{PC}=0^{++}$ and its mass should be in the range 1.45-1.75 GeV.

According to lattice inspired models glueballs will mix strongly with nearby qq-states with the same J^{PC}. The three states in the glueball mass range are:

- $f_{\theta}(1370)$
- $f_{\theta}(1500)$
- $f_{\theta}(1710)$

Analysis of glueball-qq mixing is done by F.Close and A.Kirk.

The spectrum of glueballs in pure glue LGT (Morningstar, Peardon).

S.Donskov, Future Physics @ COMPASS

CERN, September 2002

Search methods

- States with J^{PC} not allowed for normal $q\bar{q}$ -states, for example 1⁻⁺.
- Extra states, that is states that have the quantum numbers of already completed nonets, with low masses (exclude radially excited nonets members).
- Detailed study and look for states with unusual branching ratios.
- Search for states preferentially produced in gluon rich processes: Pomeron-Pomeron scattering, J/ψ decay, proton-antiproton annihilation, special hadronic reactions.

CERN, September 2002

Scalar Glueball-qq mixing above 1 GeV The WA102 collaboration: $\Gamma_{\pi\pi}$, $\Gamma_{K\overline{K}}$, Γ_{nn} , $\Gamma_{nn'}$, $\Gamma_{4\pi}$

of the $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$ In agreement with Crystal Barrel, BES, WA76, Mark III Close and Kirk => glueball-qq mixing above 1 GeV. $\begin{pmatrix} |f_0(1710)\rangle \\ |f_0(1500)\rangle \\ |f_0(1370)\rangle \end{pmatrix} = \begin{pmatrix} x_1 \ y_1 \ z_1 \\ x_2 \ y_2 \ z_2 \\ x_3 \ y_3 \ z_3 \end{pmatrix} \begin{pmatrix} |G\rangle \\ |S\rangle \\ |N\rangle \end{pmatrix}, \quad \text{with } |G\rangle \equiv |gg\rangle, |S\rangle \equiv |s\overline{s}\rangle, |N\rangle \equiv |u\overline{u} + d\overline{d}\rangle/\sqrt{2}$ results for the flavour content of scalar mesons is:

 $f_{i1}^{(G)}$ $f_{i2}^{(S)}$ $f_{i3}^{(N)}$ $f_0(1500) -0.65 \pm 0.04 \quad 0.33 \pm 0.04 \quad -0.70 \pm 0.07$, $m_s = 1674 \pm 10$ MeV. $f_0(1370) -0.69 \pm 0.07 \quad 0.15 \pm 0.01 \quad 0.70 \pm 0.07$

 $f_0(1710) \quad 0.39 \pm 0.03 \quad 0.91 \pm 0.02 \quad 0.15 \pm 0.02 \quad m_G = 1443 \pm 24 \text{ Mev}, \quad m_N = 1377 \pm 20 \text{ MeV},$

solution compatible with pp central production, pp annihilations and J/ψ radiative decays.

CERN, September 2002

The glueball- $q\overline{q}$ kinematical filter (Close, Kirk)

sensitive to the resonance nature:

- R < 0.1 for undisputed $q\bar{q}$ states produced by DPE (G = + and I = 0);
- $R \approx 0.25$ for the states which cannot be produced by DPE (I = 1 or G = -);
- $\mathbf{R} \approx 1$ for all glueball candidates.

CERN, September 2002

S.Donskov, Future Physics @ COMPASS

6

•ECAL1

total number of channels – 3216
Size – 4 x 2.9 m²
σ(E)/E = 5-6%/√E ⊗ 2%

ECAL2

total number of channels – 3436
Size – 4.4 x 2 m²
σ(E)/E = 5-6%/√E ⊗ 2%

 TARGET, liquid H₂, l = 40 cm, 2.83 g/cm², 0.046 X₀

• RPD

- Total number of channels 60
- Time measurements
 - TOF resolution 350 ps for MIP
 - Space resolution
 - A-layer 1.8 cm
 - **B-layer** 2.7 cm
- Amplitude measurements:
 - Space measurements based on light att.
 - dE/dx
- Measurements accuracy (P_{slow}, positions) for time and amplitude are comparable.

9

CERN, September 2002

Radiation hardness of the sandwich type calorimeter

Scintillator, 10% light loss	
SCSN-81 (Kuraray, Japan), 4 mm	2.0 Mrad
PSM-115(A) (IHEP, Protvino), 1 mm	2.5 Mrad

WLS fibers, 10% light loss
 Y-8 (Kuraray, Japan), 1 mm
 BCF-91a (Bicron, USA), 1 mm
 2.0 Mrad

Front-end electronics for calorimetry

- FIADC (design IHEP-TUM)
 - dynamic range 12 bit
 - linearity 10 bit
 - sampling rate 25 MHz
 - 64 channels/9U VME
 - dead time 150/450 ns
 - tested at trigger rate 50 KHz

ECAL Sampling ADC, design started at TUM

Simplified diagram of single channel ADC

• SHAPER

Stretching and smoothing input signal Being optimized for lead glass signal

• ADC

100 MHz sampling rate 10 bit resolution

• FPGA

compressing data, fitting signal Fit -> Amplitude and Time

Advantages

- illumination of long signal cables
- very good time resolution 1-2 ns
- rejection or correction pileup events

- Full prototype test in summer 2003
- Production in 2003-2004

SIMULATION: $hp \rightarrow h X^{0} p$ $\downarrow \eta\eta (\eta \rightarrow \gamma\gamma, \eta \rightarrow \pi^{0} \pi^{-} \pi^{+})$ $\downarrow \gamma\gamma$

- Event generator \Rightarrow WA102, based on real data.
- Beam momentum 280 GeV/c, RMS 1.5%.
- Trigger conditions:
 - one particle traverse two RPD layers;
 - no signals in sandwiches;
 - fast particle at the end of setup outside the beam spot.

Fast and slow hadron distributions

beam

CERN, September 2002

Central system energy

CERN, September 2002

CERN, September 2002

Mixed decay mode efficiency

Neutral decay mode efficiency

Expected statistic: 450 events/day of $f_0(1500)$ in $\eta\eta$ decay mode

Beam 2.5 * 10⁷/spill limited by ECAL2 radiation resistance.

 $\sigma_{prod} \sim 3 \ \mu b$

(WA102: 3351 ev.)

CERN, September 2002

Max. θ_{γ} from η 's decay

D	ECAL1	GAMS	ECAL2	Acc _y
i s t	16 m	34 m		0.18
a n c e	11 m	-	34 m	0.36

Wide Angular Electromagnetic Calorimeter before SM1 is desirable to increase significantly acceptance for gammas ($Acc_{\gamma} \sim 0.95$).

S.Donskov, Future Physics @ COMPASS

24

COMPASS

Central production of Exotics

Project status

• Target, RPD \Rightarrow exist	\odot
Electronic \Rightarrow should be produced	
• ECAL1	
Platform \Rightarrow exist	0
Cassette \Rightarrow in production	
Front End :	
$\mathbf{FIADC} \Rightarrow 3000$	\odot
SADC \Rightarrow design in progress	
• ECAL2	
Design \Rightarrow ready	\odot
production \Rightarrow	8
• GAMS \Rightarrow exist	\odot
• Trigger ⇒ should be produced	

CERN, September 2002

Conclusions

- High intensity beam
- Precise Large & Small Area Tracking
- Electromagnetic & Hadron Calorimetry
- Particle identification
- Fast Read-out electronics
- High performance powerful DAQ

Improvement: • WAD

COMPASS has a good perspective in meson spectroscopy