Workshop on Future Physics @ COMPASS

Measurement of electric and magnetic π and K polarizability

@ COMPASS

Marialaura Colantoni

on behalf of the COMPASS coll.

The polarizability (electric α and magnetic β) relates the average dipole (electric \vec{p} and magnetic $\vec{\mu}$) moment to external electromagnetic field.

dipole moment: $\vec{p} = \alpha \vec{E}$ magnetic moment: $\vec{\mu} = \beta \vec{H}$

The *polarizability* is a quantity which characterizes a particle like its charge, radius, magnetic moment etc.

The pion polarizabilities can be described in the framework of the Chiral perturbation Theory (χPT) based on the chiral symmetry of QCD and Goldstone theorem.

Chiral dynamics describes:

- properties
- production
- decay amplitudes
- low-energy interactions

of the $\underline{Goldstone\ boson}$ (π,η,K) among themselves and with γ 's.

Pion polarizabilities

The χPT provide a rigorous way to determine α_{π} , β_{π} via the effective Chiral lagrangian using the coupling constants L_r^9 , L_r^{10} obtained in the radiative pion beta decay ($\pi^- \rightarrow e + \overline{\nu} + \gamma$):

$$\overline{\alpha}_{\pi} = \frac{4\alpha_f}{m_{\pi} f_{\pi}^2} (L_r^9 + L_r^{10})$$

the numerical values are:

$$\begin{aligned} \overline{\alpha_{\pi}} &= (2.4 \pm 0.5) 10^{-4} fm^3 \\ \overline{\beta_{\pi}} &= (-2.1 \pm 0.5) 10^{-4} fm^3 \end{aligned}$$
consistent with the chiral symmetry $(\overline{\alpha_{\pi}} + \overline{\beta_{\pi}}) = 0.$

 $U. \ B\ddot{u}rgi, \ Phys. \ Lett. \ B\, 377\,(1996)\,147$

Photon-Photon Collision :

- From the results of the MARK II group (1990)[1] with the reaction $\gamma + \gamma \rightarrow \pi^- + \pi^+$ the value of $\alpha_{\pi} = (2.2 \pm 1.6_{stat+sys}) 10^{-4} fm^3$ was deduced [2]. [1] J. Boyer et al., Phys. Rev. D42, 1350 (1990)
- [2] P. Babusci et al., Phys. Lett. B 277 158 (1992)

Pion Photoproduction:

• A test made by the Lebedev group (1986) with the reaction

 $\gamma + p
ightarrow \gamma + \pi^+ + n$ showed feasibility.

High precision measurement made @ MAMI (A2 coll.). Data analysis is in progress.

Measurements of pion polarizability

The Primakoff reaction

For the reaction:

$$\pi + Z \to \pi' + Z + \gamma$$

one measures the Primakoff cross section $\frac{d^{3}\sigma}{dtd\omega dcos\theta} = \frac{\alpha_{f}Z^{2}}{\pi\omega} \frac{t-t_{0}}{t^{2}} \frac{d\sigma_{\pi\gamma}(\omega,\theta)}{dcos\theta} |F_{A}(t)|^{2}$ $\omega \text{ photon energy in the antilab system}$ $t = (p'_{2} - p_{2})^{2}$ $t_{0} = \left(\frac{m_{\pi\omega}}{p_{beam}}\right)^{2}$ $\theta \text{ real photon scattering angle}$ $\frac{d\sigma_{\pi\gamma}(\omega,\theta)}{dcos\theta} = \frac{2\pi\alpha_{f}^{2}}{m_{\pi}^{2}} \cdot \left(F_{\pi\gamma}^{Th} + \frac{m_{\pi}\omega^{2}}{\alpha_{f}} \cdot \frac{\alpha_{\pi}(1+\cos^{2}\theta) + \beta_{\pi}\cos\theta}{(1+\frac{\omega}{m_{\pi}}(1-\cos\theta))^{3}}\right)$

 $lpha_\pi,\ eta_\pi$ pion electric and magnetic polarizability

• The Serpukhov group (1985) with the Primakoff reaction

$$\pi+Z\to\pi+\gamma+Z$$
 at 40 GeV obtains: $\alpha_{\pi}=(6.8\pm1.4_{stat}\pm1.2_{sys})10^{-4}~fm^3$ [1]

with the hypothesis $(\alpha_\pi+\beta_\pi)=0$ and

$$\beta_{\pi} = (-7.1 \pm 2.8_{stat} \pm 1.8_{sys})10^{-4} fm^3$$
$$(\alpha_{\pi} + \beta_{\pi}) = (1.4 \pm 3.1_{stat} \pm 2.5_{sys})10^{-4} fm^3$$
[2]

[1] Yu M. Antipov et al., Phys. Lett. 121B, 445 (1985)[2] Yu M. Antipov et al., Z. Phys. C 26, 495 (1985)

The goals

 $p_{beam}=190~GeV/c~$ to increase the ratio of the coulombian/nuclear cross section Higher Z target $\to~\sigma(Z^2)$

Our goals :

• measure independently $(\alpha + \beta)$, α , β

- enough statistics:
 - to get the statistical errors negligible versus the systematic ones
 - evaluate systematic error due to different cuts
 - more complete angular distribution
- \bullet higher energy \rightarrow smaller t \rightarrow to fit Compass acceptance
- $\sigma(p_T) pprox 15 MeV/c\,$ like in the Antipov

Trigger

POLARIS

the simulation program based on

Geant 3.21

↓ CORAL:

COmpass Reconstruction and Analysis Library.

The generator

Trasversal component of four-momentum transfer

The efficiency = N_{rec} / N_{gen}

Marialaura Colantoni

Future Physics @ COMPASS - CERN 26-27/09 2002

	@ Serpukhov	@ COMPASS
beam momentum	40GeV/c	190~GeV/c
beam intensity	$10^6/spill$	$4\cdot 10^7/spill$
target	Z < Fe	Pb
scattered pion	$\sigma_{\Theta} \approx 0.12 \ mrad$	$\sigma_{\Theta} \approx 0.04 mrad$
	$\sigma_p/p pprox 1\%$	$\sigma_p/p \approx (0.3 \div 1)\%$
outgoing gamma	$\sigma_{\Theta} \approx 0.15 \ mrad$	$\sigma_{\Theta} \approx 0.031 mrad$
	$\sigma_E/E \approx 3.5\% @~27 GeV$	$\sigma_E/E \approx 2\%$ @ 120 GeV
total flux	10^{11}	$\approx 3 \cdot 10^{11}/day$
primakoff events	$6 \cdot 10^3$	$4\cdot 10^5/day$

Polarizabilities Statistics

With a $2 \cdot 10^7 \pi/s$, the spill structure is 5 sec beam every 16 sec, $3.2 \cdot 10^{11} \pi$ are expected per day.

The interaction probability $R = \sigma N_T = 5 \cdot 10^{-6}$ assuming: $\sigma = 0.5 \ mbarn$ $N_T = 10^{22} \ cm^{-2}$

The global efficiency is estimated to be $\epsilon~=24\%$ due to:

- tracking efficiency 92%
- gamma detection 58%
- combined acceptance of COMPASS and SPS 60%
- analysis cut to reduce backgrounds 75%

 $3.2 \cdot 10^{11} \times 5 \cdot 10^{-6} \times 0.24 = 4 \cdot 10^5 \, Events/day$

Summary & Outlook

Serpukhov:

 ${\cal Z}^2$ dependence

Summary & Outlook

Compass:

- Different targets: $\rightarrow Z^2$ dependence in the cross section.
- Also interesting a comparison with a pointlike particle with the reaction: $\mu^-\,+\,Z\,\to\,\mu^-\,+\,Z\,\,+\,\gamma$
- Constant efficiency on t
- \blacktriangleright Statistics 10^3 times better \rightarrow overall resolution 3 times better

$$\delta \overline{\alpha}_{\pi} \approx 0.4 \cdot 10^{-4} fm^3 \ (\approx \sigma_{theory})$$

 \blacktriangleright Polarizability measurements for K^- are possible.

Kaon polarizability

The cross section scales down as $m^{-1} \to \mathbf{3}$ times smaller compared to the π one,

the polarizability goes as $\overline{\alpha}_h = \frac{4\alpha_f}{m_h F_h^2} (L_r^9 + L_r^{10}) \rightarrow \overline{\alpha}_K = \frac{\overline{\alpha}_\pi}{5.4}$

Assume

- ▶ 3×10^5 Kaon/sec @ 190 GeV/c
- $\blacktriangleright~60~<~\omega~<~300~MeV$ to avoid $K^*~~1^{st}$ excited state

overall resolution $\delta \overline{\alpha}_K = 0.6 \cdot 10^{-4} fm^3$ $2 \cdot 10^4 events/day$

$F_{3\pi}$ measurement

 $F_{3\pi} \text{ allow to verify the low energy theorem: } F_{3\pi}(0) = \frac{F_{\pi}(0)}{ef^2}$ $\frac{d\sigma}{dsdtdq^2} = \frac{Z^2 \alpha_f}{\pi} \left(\frac{q^2 - q_{min^2}}{q^4}\right) \frac{1}{s - m_{\pi}^2} \frac{d\sigma_{\gamma\pi \to \pi\pi}}{dt}$ $\frac{d\sigma_{\gamma\pi \to \pi\pi}}{dt} = \frac{F_{3\pi}^2}{128\pi} \frac{1}{4} (s - 4m_{\pi}^2) sin^2\theta$

 $F_{3\pi} = (12.9 \pm 0.9 \pm 0.5) GeV^{-3}$ [1] $F_{3\pi} = (9.7 \pm 0.2) GeV^{-3}$ [2]

Expected $\approx 5\cdot 10^3~events/day~{\rm vs}\approx 200$ Serpukov events in total.

[1] Antipov et al., Phys. Rev. D36 21 (1987) [2] M. Moinester et al, Proc. Confernce on Physics with GeV Particel beam, Julic,

Germany 1994, Miskimen et al., Proc. Chiral Dinamic: Theory and experiment, MIT, 1994

Using $\underline{COMPASS}$ spectrometer one can measure:

- pion polarizabilities with an uncertanty of the same order of the theoretical one
- ► kaon polarizabilities for the 1^{st} time with the Primakoff reaction
- \blacktriangleright the chiral anomaly amplitude for the $\gamma~\rightarrow~3\pi$

