LCG

The LCG Dictionary and POOL

Dirk Duellmann

D. Duellmann - IT/DB LCG - POOL Project 1

Reflection Data “

What types of reflection information need to be available at
runtime

 logical description of classes
e data member names and types

* method names signature
=> compiler/platform independent

e physical layout of classes
e data member offsets and sizes
 total class size (and sub-class offsets)
=> compiler & platform dependent
e dynamic (in core) information
» function pointers for methods (including con-/destructors)
=> application/process dependent

D. Duellmann - IT/DB LCG - POOL Project 2

Dictionary & Reflection

Dictionary Components or Reflection Clients — Just a terminology proposal
» Reflection

- The component describing at runtime the transient data inheritance hierarchy and
allowing runtime data & method access

Stop-gap for missing functionality of C++ as implementation language

Language implementation often come with build-in support (Python, Java, C#, SQL and
of course Cint)

o {Object} Conversion

Component which converts objects between a transient and a persistent representation
- Client of the Reflection component

e Extraction
- Component which obtains reflection data
- by parsing C++ files, or

during C++ code generation from meta model languages like ADL or XML, or
- debug information or ...

Client of the Reflection component which fills it with information
» Language adapters (eg scripting)
- component which allows to access C++ objects from other languages
not the scope of POOL, but closely related to the Reflection component
D. Duellmann - IT/DB LCG - POOL Project

POOL and the LCG Dictionary

In POOL we try to keep the various dictionary components separate

e Why : POOL is supposed to be storage technology independent
* POOL client code should be portable to other persistency back ends with minimal
impact
* We expect to support several Conversion and Extraction components

- usually they are dependent on the persistency technology (conversion) or on
the experiment using them (extraction)

- existing implementations (eg from ROOT I/0O) are re-used for implementation
but directly exposing them would break technology independence

e LCG controlled Reflection API

* The Reflection component plays a central role and is visible to POOL user (eg
experiment framework implementers)
* Need to define a stable API
- which can be re-implemented for any backend storage
- current LCG Reflection package was extracted from GAUDI
* Need to connect this API to each technology dependent Conversion and Extraction
components

- Logically the content of the LCG and the technology dependent dictionary are kept in
sync

D. Duellmann - IT/DB LCG - POOL Project 4

Dictionary: Reflection / Extraction / Conversion T
(adapted from Pere’s original slide) -

.adl
h xml

Extraction v v
[ROOTCINT | [AbL/GOD |
! ,
CINT generated Dict generated
code o
| /
f Conversion \ \ (1) i%/
o> g
Z (o]
g3 LCG
= e
Streamer { g Dictionary
S5 e
ROOT I/0 (2) out
\ / Reflection

D. Duellmann - IT/DB LCG - POOL Project 5

LCG

Persistent Reflection / “Dictionary”

Similar but not identical role to description of transient objects

e Only a subset of transient reflection info is stored or even makes sense on
disk (basically the first two categories of the above)

» Several descriptions for a given class need to be kept to support schema
evolution

» the transient side (C++ code) can only cope with one C++ class layout per
application

e the disk may contain many

* Only both the persistent and transient reflection can steer the conversion to
the C++ class expected by the current application

» POOL so far does not directly use or expose an abstract interface to the
ROOT I/0 disk representation

» This information is used by the ROOT I/O conversion mechanism

» This is a pragmatic divergence from the RTAG proposal to be able to integrate
ROOT I/O without having to reimplement the ROOT conversion infrastructure

» The current POOL conversion service uses a technology dependent
implementation

» which is configured from a technology indepedent Reflection component

D. Duellmann - IT/DB LCG - POOL Project 6

LCG

Longer term Plans : C++0x

o Potential good news :
e IF C++0x comes with a standard for XTI and XPR
- simplify the reflection info extraction
- a gcc based extraction prototype seems to exist already
- standardize the API to access c++ reflection info
- a prototype interface/library seems to exist

o But we'll still have other reflection component around

e conversion (one per storage technology)
- ROQT team is very interested and may evolve towards xti

* languages: python, java, C#, web services, sgl (one per vendor)
» can we assume all of those will interface with xti? by when?

e Even assuming a successful standardization of XTI for quite some
time LCG will need to maintain a stable interface on its own

D. Duellmann - IT/DB LCG - POOL Project 7

