The first deployment of workload management services on the EU
DataGrid Testbed: feedback on design and implementation.

G. Avellino, S. Beco, B. Cantalupo, F. Pacini, A. Terracina, A. Maraschini
DATAMAT S.p.A.

D. Colling

Imperial College London

S. Monforte, M. Pappalardo

INFN, Sezione di Catania

L. Salconi

INFN, Sezione di Pisa

F. Giacomini, E. Ronchieri

INFN, CNAF

D. Kouril, A. Krenek, L. Matyska, M. Mulac, J. Pospisil, M. Ruda, Z. Salvet, J. Sitera, M. Vocu
CESNET

M. Mezzadri, F. Prelz

INFN, Sezione di Milano

A. Gianelle, R. Peluso, M. Sgaravatto

INFN, Sezione di Padova

S. Barale, A. Guarise, A. Werbrouck

INFN, Sezione di Torino

Application users have now been experiencing for about a year with the standardized resource brokering services
provided by the 'workload management’ package of the EU DataGrid project (WP1). Understanding, shaping
and pushing the limits of the system has provided valuable feedback on both its design and implementation. A
digest of the lessons, and “better practices”, that were learned, and that were applied towards the second major

release of the software, is given.

1. Introduction

The workload management task (Work Package 1,
or WP1) [1] of the EU DataGrid project [2] (also
known, and referred to in the following text, as EDG)
is mandated to define and implement a suitable archi-
tecture for distributed scheduling and resource man-
agement in the Grid environment. During the first
year and a half of the project (2001-2002), and follow-
ing a technology evaluation process, EDG WP1 de-
fined, implemented and deployed a set of services that
integrate existing components, mostly from the Con-
dor [3] and Globus [4] projects. This was described in
more detail at CHEP 2001 [6]. In a nutshell, the core
job submission component of CondorG ([5]), talking
to computing resources (known in DataGrid as Com-
puting Elements, or CEs) via the Globus GRAM pro-
tocol, is fundamentally complemented by:

e A job requirement matchmaking engine (called
the Resource Broker, or RB), matching job
requests to computing resource status coming
from the Information System and resolving data
requirements against the replicated file manage-
ment services provided by EDG WP2.

e A job Logging and Book-keeping service (LB),
where a job state machine is kept current based
on events generated during the job lifetime, and

the job status is made available to the submit-
ting user. The LB events are generated with
some redundancy to cover various cases of loss.

e A stable user API (command line, C++ and
JAVA) for access to the system.

Job descriptions are expressed throughout the system
using the Condor Classified Ad language, where ap-
propriate conventions were established to express re-
quirement and ranking conditions on Computing and
Storage Element info, and to express data require-
ments. More details on the structure and evolution of
these services and the necessary integration scaffold-
ing can be found in various EDG public deliverable
documents.

This paper focuses on how the experience of the first
year of operation of the WP1 services on the EDG
testbed was interpreted, digested, and how a few de-
sign principles were learned (possibly the hard way)
from the design and implementation shortcomings of
the first release of WP1 software.

These principles were applied to design and imple-
ment the second major release of WP1 software, that
is described in another CHEP 2003 paper ([7]).

To illustrate the logical path that leads to at
least some of these principles, we start by explor-
ing the available techniques to model the behaviour
and throughput of the integrated workload manage-

Job requests

[
[}
[

L]
[
[|

I AAANAANANANAA
[V RVEVEVEVEVIVEVA
/N AAA
AR EYRYAVE
VU
ARRVARVARVARV}

Ranking
of job requests

Matchmaking
of job requests

I AAAANANAA
VRV VRV VIRV
ARV ARVIRVIRVIRVARVIRY]

Submission to "Local’

Computing Element

job queue

Figure 1: The various steps to process a job request can be modeled as passing the request through a network of queues.

ment system, and identify two factors that signifi-
cantly complicate the system analysis.

2. The Workload Management System as
a network of queues

The workload management system provided by
EDG-WP1 is designed to rely as much as possible on
existing technology. While this has the obvious ad-
vantages of limiting effort duplication and facilitating
the compatibility among different projects, it also sig-
nificantly complicates troubleshooting across the var-
ious layers of software supplied by different providers,
and in general the understanding of the integrated
system. Also, where negotiations with external soft-
ware providers couldn’t reach an agreement within the
EDG deadlines, some of the interfaces and communi-
cation paths in the system had to be adapted to fit
the existing external software incarnations.

To get a useful high-level picture of the integrated
Workload Management system, beyond all these prac-
tical constraints, we can model it as a queuing system,
where job requests traverse a network of queues, and
the “service stations” connected to each queue rep-
resent one of the various processing steps in the job
life-cycle. A few of these steps are exemplified in Fig-
ure 1.

Establishing the scale factors for each service in
the WP1 system (e.g.: how many users can a sin-
gle matchmaking/job submission station serve, how
many requests per unit time can a top-level access
point to the information system serve, what is the sus-
tained job throughput that can be achieved through
the workload management chain, etc.) is one of the
fundamental premises for the correct design of the sys-
tem. One could expect to obtain this knowledge ei-
ther by applying queuing theory to this network model
(this requires obtaining a formal representation of all

the components, their service time profiles and their
interconnections) or by measuring the service times
and by identifying where long queues are likely to
build up when a “realistic” request load is injected
in the system. This information could in principle
also be used to identify the areas of the system where
improvement is needed (sometimes collectively called
bottlenecks).

Experience with the WP1 software integration
showed that both of these approaches are impracti-
cal for either dimensioning the system or (possibly
even more important) for identifying the trouble ar-
eas that affect the system throughput. We identified
two non-linear factors that definitely work against the
predictive power of queuing theory in this case, and
require extra care even to apply straightforward rea-
soning when bottlenecks are to be identified to im-
prove system throughput. These are the consequence
of common programming practice (and are therefore
easy to be found in the software components that we
build or are integrating) and are described in the fol-
lowing Section.

3. Troubleshooting the WMS

One of the most common (and most frustrating,
both to developers and to end users) experiences in
troubleshooting the WP1 Workload Management sys-
tem on the EDG testbed has been the fact that of-
ten, perceived improvements to the system (some-
times even simple bug fixes) result in a decrease in
the system stability, or reliability (fraction of requests
that complete successfully). The cause is often closely
related to the known fact that removing a bottleneck,
in any flow system, can cause an overflow downstream,
possibly close to the next bottleneck. The complicat-
ing factor is that there are at least two characteristics
that could (and possibly still can) be found in many el-

1. "Matchmaking" step is identified as bottleneck.

Ranking

of job requests Computing Element

Submission to ‘

Matchmaking
of job requests

2. Improvement applied. A job queue now forms
elsewhere.

Submission to
Computing Element

Ranking
of job requests

Matchmaking
of job requests

3. Resources used by the job queue cause the
"Submission” step to hit a timeout. Requests
may be lost!

Figure 2: A possible way to make the system throughput
worse by applying the genuine intent to make it better.
The names of the various steps are just an example and
don’t refer to any real experience or software component.

ements of our integrated workload management queu-
ing network, that can cause problems to appear even
very far from the area of the network where an im-
provement is being attempted:

e Queues of job requested can form where they can
impact on the system load.
Different techniques can be chosen or needed to
pass job requests around. Sometimes a socket
connection is needed, sometimes sequential re-
quest processing (one request at a time in the
system) is required for some reason, and mul-
tiple processes/threads may be used to handle
individual requests. Having a number of tasks
(processes/threads) wait for a socket queue or a
sequential processing slot is one way to “queue”
requests that definitely generates much extra
work for the process scheduler, and can cause
any other process served by the same scheduler
to be allocated less and less time. Queues that

are unnecessarily scanned while waiting for some
other condition to allow the processing of their
element can also impact on the system load, es-
pecially if the queue elements are associated to
significant amounts of allocated dynamic mem-
ory.

e Some system components can enforce hard time-
outs and cause anomalies in the job flow.
When handling the access (typically via socket
connections) to various distributed services, pro-
visions typically need to be made to handle all
possible failure modes. “Reasonably” long time-
outs are sometimes chosen to handle failures
that are perceived to be very unlikely by de-
velopers (failure to establish communication to
a local service, for instance). This kind of fail-
ures, however, can easily materialise when the
system resources are exhausted under a stress
test or load peak.

Figure 2 illustrates how these two effects can conspire
to frustrate a genuine effort to remove what seems
the limiting bottleneck in the system (the example in
the Figure does nor refer to any real case or compo-
nent): removing the bottleneck (1) causes a request
queue to build up at the next station (2), and this
interferes via the system load to cause hard timeouts
and job failures elsewhere (3). This example is used
to rationalise some of the unexpected reactions that,
in many cases, were found while working on the WP1
integrated system. The experience on practical trou-
bleshooting cases similar to this one, while bringing an
understanding of the difficulties inherent in building
distributed systems, also drove us to formulate some
of the principles that are presented in the next section.

4. Principles that were learnt (and
applied to improve the design)

The attempts at getting a deeper understanding of
the EDG-WP1 Workload Management System and
their failures led us to formulate a few design princi-
ples and to apply them to the second major software
release. Here are the principles that descend from the
paradigm example described in Section 3:

0 1. Queues of various kinds of requests for
processing should be allowed to form
where they have a minimal and under-
stood impact on system resources.
Queues that get ‘filled’ in the form of multiple
threads or processes, or that allocate significant
amounts of system memory should be avoided,
as they not only adversely impact system per-
formance, but also generate inter-dependencies
and complicate troubleshooting.

0 2. Limits should always be placed on dynam-

ically allocated objects, threads and/or
subprocesses.
This is a consequence of the previous point: ev-
ery dynamic resource that gets allocated should
have a tunable system-wide limit that gets en-
forced.

0 3. Special care needs to be taken around the
pipeline areas where serial handling of re-
quests is needed.

The impact of any contention for system re-
sources becomes more evident near areas of the
queuing system that require the acquisition of

system-wide locks.

So far we concentrated on a specific attempt at
modeling and understanding the workload manage-
ment system that led to an increased attention to the
usage of shared resources. There were other specific
practical issues that emerged during the deployment
and troubleshooting of the system and that led to the
awareness of some fundamental design or implemen-
tation mistake that was made. Here is a short list,
where the fundamental principle that should correct
the fundamental mistake that was made is listed:

0 4. Communication among services should al-

ways be reliable:

- Always applying double-commit and roll-
back for network communications.

- Going through the filesystem for local com-
munications.

In general, forms of communication that don’t
allow for data or messages to be lost in a bro-
ken pipe lead to easier recovery from system or
process crashes. Where network communication
is necessary, database-like techniques have to be
used.

0 5. Every process, object or entity related to
the job lifecycle should have another pro-
cess, object or entity in charge of its well-
being.

Automatic fault recovery can only happen if ev-
ery entity is held accountable and accounted for.

0 6. Information repositories should be mini-
mized (with a clear identification of au-
thoritative information).

Many of the software components that were in-
tegrated in the EDG-WP1 solution are stateful
and include local repositories for request infor-
mation, in the form of local queues, state files,
database back-ends. Only one site with authori-
tative information about requests has to be iden-

tified and kept.

O 7. Monolithic, long-lived processes should be
avoided.
Dynamic memory programming, using lan-
guages and techniques that require explicit re-
lease of dynamically allocated objects, can lead
to leaks of memory, descriptors and other re-
sources. FExperimental, R&D code can take
time to leak-proof, so it should possibly not be
linked to system components that are long-lived,
as it can accelerate system resource starvation.
Short-lived, easy-to-recover components are a
clean and very practical workaround in this case.

O 8. More thought should be devoted to effi-
ciently and correctly recovering a service
rather than to starting and running it.

This is again a consequence of the previous
point: the capability to quickly recover from fail-
ures or interruption helps in assuring that sys-
tem components ‘can’ be short-lived, either by

design or by accident.

5. Conclusions

EDG-WP1 has been distributing jobs over the EDG
testbed in a continuous fashion for one and a half years
now, with a software solution where existing grid tech-
nology was integrated wherever possible.

The experience of understanding the direct and
indirect interplay of the service components could
not be reduced to a simple scalability evaluation.
This because understanding and removing bottlenecks
is significantly complicated by non-linear and non-
continuous effects in the system. In this process, few
principles that apply to the very complex practice of
distributed systems operations were learned the hard
way (i.e. not by just reading some good book on the
subject). EDG-WP1 tried to incorporate these prin-
ciples in its second major software release that will
shortly face deployment in the EDG testbed.

Acknowledgments

DataGrid is a project funded by the European Com-
mission under contract IST-2000-25182.

We also acknowledge the national funding agencies
participating to DataGrid for their support of this
work.

We wish to thank the Condor development team for
many valuable discussions.

References

[1] Home page for the Grid Workload Management
workpackage of the DataGrid project
http://www.infn.it/workload-grid.

[2] Home page for the Datagrid project
http://www.eu-datagrid.org.

[3] Home page for the Condor project
http://www.cs.wisc.edu/condor/

[4] Home page for the Globus project
http://wuw.globus.org

[5] J. Frey, T. Tannenbaum, I. Foster, M. Livny, S.
Tuecke, “Condor-G: A Computation Management
Agent for Multi-Institutional Grids”, Proceedings

[6

[7

[’

—

of the Tenth IEEE Symposium on High Perfor-
mance Distributed Computing (HPDC10), 2001
DataGrid WP1 members (C. Anglano et al.), “In-
tegrating GRID tools to build a Comput-
ing Resource Broker: Activities of Data-
Grid WP1” Presented at the CHEP 2001 Con-
ference, Beijing (p. 708 in the proceedings)
DataGrid WP1 members (G. Avellino et al),
“The EU DataGrid Workload Management
System: towards the second major release”
Also presented at the CHEP 2003 Conference, San
Diego

