
 CHEP03, La Jolla California, March 24 – 28 2003 1

MODT004

Towards automation of computing fabrics using tools from the fabric
management workpackage of the EU DataGrid project

Olof Bärring, Maite Barroso Lopez, German Cancio, Sylvain Chapeland, Lionel Cons, Piotr
Poznañski, Philippe Defert, Jan Iven, Thorsten Kleinwort, Bernd Panzer-Steindel, Jaroslaw Polok,
Catherine Rafflin, Alan Silverman, Tim Smith, Jan Van Eldik
CERN, CH1211 Geneva-23, Switzerland

Massimo Biasotto, Cristine Aiftimiei, Enrico Ferro, Gaetano Maron
INFN-LNL, Viale dell’Universita 2, I-35020 Legnaro (PADOVA), Italy

Andrea Chierici, Luca Dellagnello
INFN-CNAF, Viale Berti Pichat 6/2, I-40127 Bologna, Italy

Marco Serra
INFN-Roma1, P.le Aldo Moro 2, I-00185 Roma, Italy

Michele Michelotto
INFN-PADOVA, Via Marzolo 8, I-35131 Padova, Italy

Thomas Röblitz, Florian Schintke
ZIB, Takustraße 7, D-14195 Berlin – Dahlem, Germany

Lord Hess, Volker Lindenstruth, Frank Pister, Timm Morten Steinbeck
Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany

David Groep, Martijn Steenbakkers
NIKHEF, PO Box 41882, 1009 DB Amsterdam, The Netherlands

Paul Anderson, Tim Colles, Alexander Holt, Alastair Scobie
University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK

Michael George
Oxford Street, Liverpool L69 7ZE, United Kingdom

Rafael A. García Leiva
Departament of Theoretical Physics, Universidad Autónoma de Madrid
Ctra Colmenar Km 15 28049 Madrid, Spain

The EU DataGrid project workpackage 4 has as an objective to provide the necessary tools for automating the management of
medium size to very large computing fabrics. At the end of the second project year subsystems for centralized configuration
management (presented at LISA'02) and performance/exception monitoring have been delivered. This wil l soon be augmented
with a subsystem for node installation and service configuration, which is based on existing widely used standards where
available (e.g. rpm, kickstart, init.d scripts) and clean interfaces to OS dependent components (e.g. base installation and service
management). The three subsystems together allow for centralized management of very large computer farms. Finally, a fault
tolerance system is being developed for tying together the above subsystems to form a complete framework for automated
enterprise computing management by 3Q03. All software developed is open source covered by the EU DataGrid project license
agreements.

This article describes the architecture behind the designed fabric management system and the status of the different
developments. It also covers the experience with an existing tool for automated configuration and installation that have been
adapted and used from the beginning to manage the EU DataGrid testbed, which is now used for LHC data challenges.

1. INTRODUCTION

The EU DataGrid project is a three-year EU funded
project to develop middleware for data intensive grid
applications. The project started in January 2001 and is
divided into 12 workpackages: 5 for middleware
development, 2 for Grid testbed infrastructure, 3 for
scientific applications (HEP, Biology, Earth Science) and
2 for dissemination and management.

Workpackage 4, WP4, is one of the middleware
workpackages and has as main objectives to deliver a
computing fabric comprised of all the necessary tools to
manage a center providing grid services on clusters of
thousands of nodes. The workpackage is divided into five
software development subtasks:

• Configuration management
• System monitoring
• Installation management and maintenance
• Fault tolerance
• Resource management
• “Gridification”
The four first subtasks provide the basic software

subsystems for the automated fabric management while
the two latter are more aimed to grid-enable the fabric.
This paper will mainly describe the automated fabric
management subsystems.

The next section describes the high-level architecture for
how the different subsystems work together. Thereafter
follows four sections with detailed descriptions for each
subsystem and the development status. Finally the

 CHEP03, La Jolla California, March 24 – 28 2003 2

MODT004

conclusions will sum up the experience and status so far
and future work up to the end of the project.

2. ARCHITECTURE

A high level view of the WP4 architecture for automated
fabric management is depicted in Figure 1.

Figure 1: high level view of the WP4 architecture for
automated fabric management.

The numbered arrows 1 – 10 indicated in Figure 1
describe a typical sequence for the detection of an
exception and coordination of the automated recovery:

1. Monitoring data flows from all nodes in the
computer center to a monitoring repository

2. The fault tolerance system reads and correlates data
from the monitoring system to detects exception
conditions that require automated interventions

3. The fault tolerance system instructs the resource
management system that interfaces with the cluster
batch system to remove the node from production
and drain/kill (depending on the urgency) running
jobs on the node

4. Fault tolerance system informs the monitoring
system about the action taken to remove the node
from production

5. The resource management system informs the
monitoring when the node has been removed from
production and all running jobs have finished

6. The fault tolerance system reads and the updated
node information and decides to launch the node
maintenance

7. Depending on the maintenance action the fault
tolerance system may first change the configuration
of the node by committing a new configuration
template in the configuration management system.
If no reconfiguration is required the fault tolerance
system may either directly launch the repair on the
node or instruct the installation and node mgmt
system to perform some action (e.g. repair an
installation or simply reboot the node).

8. Fault tolerance system informs the monitoring
system about the launched repair action

9. Installation and node management system reads the
node configuration profile managed by the
configuration management system and calls service
configuration objects to deploy new configurations
or simply restart services.

10. Monitoring data flows from all nodes in the
computer center to a monitoring repository

11. Fault tolerance system reads data from the
monitoring repository and detects that the node has
been repaired.

12. Fault tolerance system instructs the resource
management system to put back the node in
production

13. Fault tolerance system informs the monitoring
system about the action to put the node back in
production

It is important to point out the information model chosen
by WP4: the configuration management system manages
the desired state while the monitoring system records the
actual state. This distinction is necessary since deployment
of configuration changes may take long time and in real
production clusters the actual state and desired state may
only converge asymptotically. For instance, a
configuration change that requires a reboot cannot be
deployed on all nodes at the same time if a minimum
service level is required.

The monitoring system not only receives normal
monitoring data such as performance and exception
metrics but it is also used to keep track of all automatic
recovery actions. It works in conjunction with the fault
tolerance system, which takes its input data from the
monitoring system and reports back the launched recovery
actions. This strict tracing of actions also holds true for
manual interventions where, for instance, the
acknowledgement of an alarm is recorded by the
monitoring system. The aim is to allow for several levels
of fault tolerance recovery so that if a repair fails after a
certain number of retries, another repair strategy could be
selected automatically.

The configuration information for the desired state is
expressed in a special declarative language, called the
High Level Definition Language, HLDL, developed by
WP4. The administrators or service managers write HLDL
configuration templates, which are compiled by the
configuration management system into node profiles. A

Farm A

(L S F)

Farm B

(P B S)

Installation &
Node Mgmt

Configuration
Management

MonitoringResource
Management

Information

Invocation

Fault tolerance

1, 10

2, 6, 11

3, 12

5

7
7

9

9

4, 8, 13

 CHEP03, La Jolla California, March 24 – 28 2003 3

MODT004

node profile is an XML files containing the entire
configuration that is to be managed on a node. The HLDL
language supports inheritance through inclusion, which
allows for managing the configuration information in a
hierarchical structure called the template hierarchy.
Another hierarchy, the configuration schema, is formed by
the name space defined for the configuration parameters.
The configuration schema and the template hierarchy are
independent.

The installation and node management subsystem
includes several components:
• The Automated Installation Infrastructure (AII) for

automatic generation of DHCP configuration and
kickstart files according to the desired configuration
managed by the configuration management system.

• The Node Configuration Manager (NCM) deploys the
desired node configuration using a component
framework.

• The Software Package Management Agent (SPMA)
handles local software installation.

• The software repository (SWRep) contains the
software packages that might be referenced from a
desired configuration.

In the following sections the monitoring, fault tolerance,
configuration and installation subsystems will be described
in more detail.

3. SYSTEM MONITORING SUBSYSTEM

3.1. Design

The different components of the monitoring subsystem
[13] are shown in Figure 2. A Monitoring Sensor Agent
(MSA) runs on all monitored nodes. It is responsible for
calling the plug-in sensors to sample the configured
metrics. The sampling frequency can be configured per
metric. The interface is designed so that the sensor is not
required to answer to sampling requests and it may chose
to trigger its own unsolicited samplings. The sensor
communicates with the MSA over a normal UNIX using a
simple text protocol. To hide the protocol details, a sensor
API C++ class has been defined for convenience.

All monitoring data gathered on a node is stored in a
local cache, which is available for local consumers of
monitoring data. This is useful for allowing for local fault
tolerance correlations engines. The monitoring data is also
forwarded to a global measurement repository, where it is
available for remote global consumers. The same
externalized measurement repository API is used to access
the data at both local and global level. The repository API
is implemented using SOAP RPC and provides methods
for time series queries and subscription/notification of new
monitoring measurements. The sampling values are plain
text strings and it is up to the consumer to correctly parse
the values. While this can be perceived as a cumbersome
for simple single number valued metrics, it has the
advantage that the metric values are unconstrained as long
as they can be represented as printable text strings.

Figure 2: components of the monitoring system and
how they are deployed

The local cache is implemented as a flat text file
database, with one file per metric per day. The file format
is “ timestamp value”. The global measurement repository
server provides an open interface (same as the repository
API) to plug-in any backend database system. Current
database backend implementations for flat text file (same
as for the local cache) and Oracle exist. An interface
MySQL is being developed.

Figure 3: schematic picture of TCP transport proxy
mechanism.

The transport of monitoring data from the monitored
nodes to the central repository is also pluggable. An UDP
based implementation has been in use since more than one
year at CERN. A TCP based implementation exists as
prototype. The TCP based solution works over
permanently open sockets and it includes a proxy like
mechanism to fan-out the number of open connections on
the global repository to a subset of the monitored nodes.

Database

Measurement repository

Monitored
nodes acting
as proxies

Monitored
nodes

Database

M o n i to r i n g

S en so r

A g en t

(M S A)

C ac h e
L o c al

C o n su m er

S en so r

L o c al

C o n su m er L o c al

C o n su m er

S en so r
 S en so r

M o n i to r i n g

S en so r

A g en t

(M S A)

C ac h e
L o c al

C o n su m er

S en so r

L o c al

C o n su m er L o c al

C o n su m er

S en so r
 S en so r

M o n i to r i n g

S en so r A g en t

(M S A)

C ac h e
L o c al

C o n su m er

S en so r

L o c al

C o n su m er L o c al

C o n su m er

S en so r
 S en so r

Monitored node

Measurement repository G l o bal

C o n su m er

 CHEP03, La Jolla California, March 24 – 28 2003 4

MODT004

Figure 4: fault tolerance subsystem and its interaction with the monitoring subsystem

On the “proxy” nodes the transport part of the MSA not
only sends the monitoring data of the node itself but it
also receives and forwards data from other MSAs. The
proxy architecture is schematically shown in Figure 3.
Note that instead of 10 incoming connections to the
global measurement repository there are only 3 for the
configuration depicted in the figure. Currently the proxy
configuration must be configured statically but it is
intended to make this dynamic so that the measurement
repository decides on-the-fly which of its clients should
act as proxies.

3.2. Status

Monitored nodes:
• Monitoring Sensor Agent (MSA) and UDP based

transport protocol are ready and used on CERN
production clusters since more than a year

• The TCP based proprietary protocol exists as
prototype. More testing and functionality needed to
be ready for production use

Central services
• Repository server exists with both flatfiles and

Oracle database. The latter is currently being
evaluated for production use at CERN. Support for
MySQL is planned for later in 2003

• Alarm display: still in early prototype phase.
Repository API for local and global consumers:
• C library implementation of API (same for local

and global consumers)
• Bindings for other languages can be generated

directly from the WSDL

4. FAULT TOLERANCE SUBSYSTEM

4.1. Design

The components of the fault tolerance subsystem and
how they interoperate with the monitoring subsystem are
shown in Figure 4. Central to the fault tolerance system is
the rule based correlation engine allowing
users/administrators to define set of rules that are executed
by the system. A rule determines exception conditions and
maps them into actions to be executed. Arbitrarily
complex exception conditions can be expressed using a
simple but efficient language. The language offers the
basic numerical and Boolean operations as well as string
comparison. The language also provides a possibility to
collect all kinds of data from a computing node, which
then enters into the expression as a variable.

A web-based XML editor can be used for creating the
rules. The XML file defining the rule is copy to the nodes
where it is parsed by a local fault tolerance daemon
consisting of a decision unit and an actuator agent.

The decision unit parses the configured rules and is
responsible for using the monitoring repository API to call
the monitoring system to subscribe to all metrics needed
by the rule. The monitoring system notifies the decision
unit whenever there is a new measurement of the metrics.
The decision unit then re-evaluates the rule. The actuator
agent is called if an exception condition expressed by the
rule is met.

The actuator agent takes the output from the decision
unit and determines which actuator to call. An actuator can
be any executable command (binary or script) that is
available on the node. The actuator agent launches the
actuator and reports back as a normal metric the return
status of the actuator to the monitoring system. This
feedback to the monitoring system is important. It allows
tracing actions and it allows the correlation engine to be
state less. Retry loops can be created by defining a rule
that takes the actuator return status metric as input. The
feedback also allows for escalation of exception that
cannot be solved locally.

4.2. Status

Sensor
 MSA Sensor

 Sensor

Decision
Unit (DU)

Actuator
agent

Monitoring

Rules Cache

Ft global
server

Local Node

Actuator

Fault tolerance

 CHEP03, La Jolla California, March 24 – 28 2003 5

MODT004

The fault tolerance subsystem is not yet ready for production deployment but a prototype was demonstrated

CCM

SPMASPMANCM
Components

Cdispd

NCM

Registration
Notification

SPMA

SPMA.cfg

CDB

nfs
http

ftp

Mgmt API

ACL’s

Client Nodes

SWRep Servers

cache

P
ackages

(rpm
, pkg)

P
ackages

(rpm
, pkg)

packages

(RPM, PKG)

PX
E

D
H

C
P

Mgmt API

ACL’s

Installation server

DHCP
handling

K
S/JS

PXE
handling

KS/JS
generator

Node
Install

CCM

Node (re)install?

Figure 5: Installation Management subsystem

working together with the fabric monitoring system at
EU review in February 2003. The setup included a Web-
based rule editor and central rule repository (MySQL)
for managing the rules. On the local nodes a local fault
tolerance daemon was deployed that

• Automatically subscribed to monitoring metrics
specified by the rules

• Launched the associated actuators when the
correlation evaluates to an exception

• Reported back to the monitoring system the
recovery actions taken and their status

Only local correlations (detection of daemon dead
followed by an automatic restart) were demonstrated at
the review. Global (inter-node) correlations will be
supported later.

5. INSTALLATION MANAGEMENT
SUBSYSTEM

The installation management system ([3]) provides
scalable solutions for the automated from scratch
installation, (re-)configuration and software package
distribution and management of large clusters.

5.1. Automated Installation Infrastructure

The AII (Automated Installation Infrastructure)
subsystem [4] provides tools for the management of
standard vendor installation servers. This includes the
configuration of network related information, like the
DHCP tables and the network bootstrap protocol (e.g.
PXE for Intel/Linux and OpenBoot for Solaris). Also,
the node specific installation setup rules (KickStart for
Linux respective JumpStart for Solaris) have to be
generated. The AII obtains its configuration either from
the CDB (via the CCM), or from site specific network
databases.

5.2. Node Configuration Management

The NCM (Node Configuration Management)
subsystem [5] provides a framework for adapting the
actual configuration of a node to its desired
configuration, as it is described in the node's profile
inside the CDB.

Plug-in software modules called 'components' are
responsible for the configuration of local services (e.g.
network, sendmail, NFS), analogously to LCFG 'objects'
[6] or SUE 'features' [7]. For this, they can read CDB
configuration information via the CCM, and
create/update/delete local service configuration files in
order to match the CDB configuration description.

 CHEP03, La Jolla California, March 24 – 28 2003 6

MODT004

Components register which configuration entries or
subtrees it is interested in, and get notified in case of
changes.

Each component contains the knowledge for
translating the CDB configuration into each local
service's specific config file syntax. A component may
also require notifying a service about a configuration
change (e.g. by running a 'restart' or 'reload' method in a
SysV init script).

The NCM subsystem contains the following modules:
• cdispd: The Configuration Dispatch Daemon

(cdispd) monitors the node configuration profile
by polling the CCM. In case of changes in the
configuration profile, the cdispd will invoke the
affected components via the ncd.

• ncd: The Node Configuration Deployer (ncd) is
the framework and front-end for executing the
configuration components. The ncd can be
executed manually, via cron, or via the cdispd. It
takes care of which takes care of configuration
locking and inter-component dependency ordering
prior to executing components sequentially.

• Component support libraries: Libraries for
recurring system management tasks (system
information, interfaces to system services, file
editing), log file handling, interface to
Monitoring, etc.

5.3. Software package management and
distribution

The Software Package Management and Distribution
(SPM) subsystem [8] is responsible for managing and
storing software packages, and the distribution and
installation of these packages on client nodes.

The SPM subsystem contains the following modules:
• Software Repository: The Software Repository

(SWRep) module allows site administrators and
package maintainers to store and manage software
packages (like RPM or PKG packages) subject to
authentication and authorization using ACL's. The
packages themselves are accessible to the clients
via standard protocols including HTTP, FTP, or
using a shared file system. It is possible to have
multiple (replicated or independent) Software
Repository instances for a given fabric, allowing
for load balancing, and also private per-
department repositories. The replication of
repositories can be done with standard tools like
rsync.

• SPMA: The Software Package Manager Agent
(SPMA) runs on the target nodes. It reads a local
configuration file with the list of desired
packages, compares it with the currently installed
packages, computes the necessary
install/deinstall/upgrade operations, and invokes

the system packager (e.g. rpm1 on Linux,
pkgadd/del on Solaris) with the right operation
transaction set.

• SPM component: The information on which
packages are to be deployed on which nodes
(desired or target configuration), and which
packages are available on which repositories can
be kept in the CDB. The SPM component fits into
the NCM framework described above. It retrieves
the list of packages to be installed for the current
node from the CDB via the CCM, creates with
this information a local configuration file for the
SPMA, and launches the SPMA.

Typically, the SPMA is used for managing all
packages on a node. This is useful for nodes which are
under full control of the fabric management system.
However, for add-on installations or desktop systems,
the SPMA can be run in 'light' mode, taking care of a
subset of packages only, according to configurable
policies.

For performance and scalability issues, the SPMA can
use a local cache where packages can be stored ahead.
This way, peak loads on software repository servers can
be avoided during upgrades of large farms, but keeping
consistency across the upgraded nodes. Also, the default
transport protocol is set to HTTP for its scalability and
low overhead.

5.4. Status

The architectural design of the AII and NCM
subsystems has finished; the detailed design and
implementation is progressing, and a first prototype
version of these subsystems will be available at the end
of the summer. A integrated solution, including
components for configuring the most common system
services, is expected to be available by the end of
September.

A first production version of the SPM subsystem is
being deployed on CERN’s central batch and interactive
services.

6. CONFIGURATION MANAGEMENT
SUBSYSTEM

6.1. Design

The Configuration Management subsystem consists of
modules shown in the Figure 6. The configuration
information is stored centrally in the Configuration
Database, CDB. The configuration of a particular node is

1 Since 'rpm' on Linux does not accept multiple simultaneous
operation types, we developed a new front-end called 'rpmt'
(for transactional rpm) capable to handle multiple operations
on multiple packages in a single transaction.

 CHEP03, La Jolla California, March 24 – 28 2003 7

MODT004

GUI

CLI

PanPanPan XMLXMLXML

Server Module
SQL/LDAP/HTTPServer Module

SQL/LDAP/HTTP

N
V
A

A
P
I

N
V
A

A
P
I

CDB

Installation
...

CCM

Cache

Node

pan

Figure 6: Configuration Management subsystem

stored locally by the Configuration Cache Manager and
available to the clients through Node View Access API.

Configuration Information may be also accessed
centrally through some other means e.g. the SQL or
LDAP queries. This functionality is provided by the
Server Modules.

The configuration information is structured in a tree
format, and expressed with the High Level Description
Language called Pan [9]. Pan mainly consists of
statements to set some value to a configuration
parameter identified by its path in the configuration
information tree.

Pan features include other statements like "include"
(very similar to cpp's #include directive) or "delete" that
removes a part of the configuration information tree.

The grouping of statements into templates allows the
sharing of common information and provides simple
inheritance mechanism.

Pan contains a very flexible typing mechanism. It has
several built-in types (such as "boolean", "string", "long"
and "double") and allows compound types to be built on
top of these. Once the type of the element is known, the
compiler makes sure that only values of the right type
are assigned to it.

To have even greater control on the information
generated by the compiler, one can attach validation
code to a type or to a configuration path.

The validation code is represented in a simple yet
powerful data manipulation language which is a subset
of Pan and syntactically similar to C or Perl.

The Configuration Database [10] stores two forms of
configuration information. One is High Level
Description expressed in the Pan language. The other is
the Low Level Description [11] and is expressed in
XML.

The system administrators can edit the High Level
Description, either through Command Line Interface
(CLI) or Graphic User Interface (GUI). There is also
possibility of having some scripting layer on top of the
Configuration Database. The Low Level Description

(one XML file per machine) is always generated using
the Pan compiler.

The database works in a transactional way. It performs
validation of the configuration information. Once the
validation and compilation process is accomplished
successfully, the changes introduced by the user are
stored in the database and visible to its clients.

Configuration Database also provides mechanisms for
versioning and it maintains the history of the changes of
the configuration information.

The database itself includes a scalable distribution
mechanism for the XML files based on HTTP, and the
possibility of adding any number of back-ends (such as
LDAP or SQL) - the Server Modules, to support various
query patterns on the information stored. It should scale
to millions of configuration parameters.

Configuration Cache Manager runs on every node and
caches the XML machine configuration (to support
disconnected operations). The access to the information
is provided through a Node View Access API [12] that
hides the details such as the XML schema used.

The Manager may poll the Configuration Database for
the configuration information. It also receives UDP
notification sent by the database if the machine's
configuration is changed.

6.2. Status

The Configuration Management subsystem is
implemented except for the Command Line Interface and
the Server Modules. Most of the components are in
production versions. It has been being deployed for the
LCG1 using the "PanGUIn" GUI.

In parallel, the whole system is being consolidated.
The issues of scalability and security are being studied
and addressed. Currently the Server Modules for the
XML replication and the SQL access are developed.

7. CONCLUSIONS AND OUTLOOK

 CHEP03, La Jolla California, March 24 – 28 2003 8

MODT004

In the first two years of the project the work was
focused into surveying the existing solutions for
automated management of large clusters, getting the
architecture and design right, and implementing
prototypes of the different subsystems.

At the time of writing this paper, stable prototypes
exist for all subsystems; some of them are already
deployed at CERN and/or the EDG project testbed, and
are presently being evaluated for production purposes:
• System monitoring: 1000 nodes being monitored,

with 20 different MSA configurations (form 80 to
120 metrics per node), sending data to a central
measurement repository.

• Configuration management: CDB in production
status, holding site-wide, cluster and node specific
configurations for 550 clients, totalizing 1200
templates.

• Installation management and maintenance: First
pilot of Software Repository and SPMA being
deployed on CERN Computer Centre for the central
CERN production (batch & interactive) services. All
the nodes declared in the CDB are (re)installed
using the SPMA, accessing packages from a
replicated and load-balanced HTTP-based SWRep
repository server cluster. The idea is go grow up to
~ 1.5K nodes at the end of 2003.

Consult reference [2] for further details.
Most of the changes required to move from the

prototyping stage to production quality tools are the
result of the testing and evaluation period. No
fundamental flaw has been found in the architecture so
far. However, simulating real production use has shown
to be the only efficient way of finding development bugs
or functionality enhancements. Computing Centers have
also very high requirements on stability and reliability
that can only be tested in a real environment.

 The users have been involved throughout the whole
design and development process, but it is now when their
collaboration is becoming crucial.

The plans from now till the end of the project are
focused on two areas. Firstly the work on general aspects
as security, scalability, usability, graphical user
interfaces, etc needs to be completed.

Secondly, the different fabric subsystems need to be
“glued” together to build a consistent set of fabric
management tools. Each subsystem has been
implemented as a modular set of tools, which could be
used independently according to the user needs. The
tools will work together to provide all the functionality
needed to automatically manage medium size to very

large computing fabrics, as stated in the initial
objectives.

8. ACKNOWLEDGMENTS

The authors wish to thank the EU and our national
funding agencies for their support of this work.

9. REFERENCES

[1] Lionel Cons, Piotr Poznanski: PAN: A High-
Level Configuration Language. Invited paper
presented at 2002 LISA XVI, Philadelphia PA,
November 3 – 8, 2002

[2] Vladimir Bahyl, Benjamin Chardi, Jan van Eldik,
Ulrich Fuchs, Thorsten Kleinwort, Martin Murth,
Tim Smith “ Installing, Running and Maintaining
Large Linux Clusters at CERN” , CHEP 2003
proceedings

[3] Installation subsystem home page.
http://cern.ch/wp4-install.

[4] Cristina Aiftimiei, Enrico Ferro. AII (Automated
Installation Infrastructure) design. 2003.
http://edms.cern.ch/documents/374559.

[5] German Cancio. Node Configuration Manager
Design. 2003.
http://edms.cern.ch/documents/372643.

[6] Paul Anderson. Writing LCFGng components,
2002.
http://www.lcfg.org/doc/lcfgcomponents.pdf.

[7] Lionel Cons et al. Standard Unix Environment
(SUE), 1995. http://cern.ch/proj-sue.

[8] German Cancio, Ian Neilson. Software Package
Management and Distribution Design. 2003.
http://edms.cern.ch/documents/372724.

[9] Lionel Cons and Piotr Poznanski, "High Level
Configuration Description Language
Specification",
http://cern.ch/hep-proj-fabric-config , 2002.

[10] Lionel Cons and Piotr Poznanski, "Configuration
Database Global Design"
http://cern.ch/hep-proj-grid-fabric-config , 2002.

[11] Michael George, "Node Profile Specification",
http://cern.ch/hep-proj-grid-fabric-config , 2002.

[12] Piotr Poznanski, "Node View Access API
Specification",
http://cern.ch/hep-proj-grid-fabric-config , 2002.

[13] Monitoring subsystem home page
http://cern.ch/wwwpdp/monitoring , 2002.

.

