
International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

 2002 Ticer B.V. 2.1

IT and Electronic Publishing
Issues, Trends and Developments

Teun Nijssen
Senior Project Manager, Tilburg University, Computer Centre, The Netherlands

1 INTRODUCTION

This text is the paper reflection of a presentation given on 4 March 2002 in Geneva as part of
Ticer’s International Spring School on the Digital Library. The presentation is of an
introductory nature and aims at providing enough technological background to set the stage
for more detailed subjects later in the Summer School.

2 DIGITAL LIBRARY PROJECTS AT TILBURG UNIVERSITY

In the past decade Tilburg University Library, often in cooperation with Tilburg University
Computer Centre, has done numerous projects that were related to providing an end-user
environment of which a modern Digital Library can be proud. Some of these projects
integrated day-to-day office tools into a well-managed environment and others added Internet
facilities.

There has also been a set of projects that applied emerging technology to construct what is
now called a pre-print server or an internationally distributed full-text scientific document
service. The relevant issues, trends and developments can be made clear by extrapolating
what was done in the most important five technology projects of the past. So these are
summarised first.

2.1 KWIK

In the early 1990s, Tilburg University started a project called Kwik (pronounce “Quick”). The
Dutch word kwik is a literal translation of the word mercury, the liquid metal. At Carnegie
Mellon University in Pittsburgh a project called Mercury had produced an integrated service
that allowed users to do free text searches in scientific journal texts. Also, the full text of the
original publications could be displayed on screen, and printed on a laser printer. The system
ran a pilot service on the CMU campus; visitors were impressed.

The main disadvantage of Mercury was that it only ran on Unix workstations. In the early
nineties PCs ran Windows 3.1. WWW browsers were available, but HTML Forms and web
server CGI programming were still in the future, so user interfaces were hand crafted. CMU
had learned a lot on the Unix/Motif graphical user interface.

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

2.2 2002 Ticer B.V.

Tilburg University library and computer centre set out to make a Windows GUI client in
cooperation with CMU and Digital Equipment. Articles from Elsevier journals were used to
start a service. Once again, visitors were quite impressed with the results, but the project
proved to be only a model for future developments. It did not become something that was
used elsewhere on the world.

Several reasons contributed to this:
• Not too many libraries yet had contracts for the supply of digital versions of copyrighted

journal publications.
• It is amazingly hard to introduce a piece of software for specific narrow purposes on many

PCs. The Kwik client simply didn’t make it to 100,000 PCs.
• Not too much after Kwik, the web got Forms, CGIs and Get and Post methods.

But Tilburg University learned; about parsing metadata supplied by publishers, about Z39.50
and about storage of documents. The stage was set for follow-up projects.

2.2 ELISE AND ELISE II

Between 1993 and 1995, Tilburg University became a participant of the EU project Elise
(“Electronic Library Image Services in Europe”). De Montfort University in Leicester led the
project; other partners were IBM UK Scientific and the Victoria & Albert museum.

When the project was conceived, the Joint Photographer's Expert Group had specified the
JPEG standard and software was available to produce .jpg files from scanner output. Also,
Kodak started actively marketing its PhotoCD product. No experience was available in
producing large image banks or in making the results searchable and retrievable across
networks. The Internet of course was orders of magnitude slower than nowadays.

The project produced a beautiful collection of images from the treasures of the V&A and
digitised the Topographical Historic Atlas of Noord Brabant. As all librarians who have
cataloguing departments know, the production of metadata turned out to be expensive and
time consuming in the case of the V&A were descriptions were not available electronically.
Three user interfaces were produced, several Z39.50 libraries were explored and integrated
and the results worked fine.

Once again, visitors were impressed and the EU evaluators were very positive. In Hollywood,
a successful movie often implies a sequel, like Rocky-2 or HomeAlone-2. It is not know if
there are relations between the EU and the movie industry, but anyway Elise inspired the Elise
2 project. It ran between 1996 and 1999 and aimed mainly at exploitable user services.

From the perspective of technology usage, the emergence of Java in the period before 1996
was relevant. Elise 2 tried to introduce Java at the client side of a browser connection and
learned a lot about the subtle differences between Netscape Communicator and Internet
Explorer and about version non-interoperability. These lessons were learned the hard way.
Client side scripting without rigorous standardisation of implementations is something to
really hate.

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

 2002 Ticer B.V. 2.3

Another technological subject area that was explored in Elise 2 was multimedia documents.
With the cooperation of a regional TV broadcasting company, Omroep Brabant TV, some 120
hours playing time of MPEG documents was produced from historic short amateur films. Real
Players and Microsoft Media Players were considerably more primitive than they are now and
Internet bandwidth was only just getting sufficient for streaming video.

2.3 DECOMATE AND DECOMATE 2

In 1995, while Elise was still unfolding Tilburg University started another EU project. It was
motivated by the number of publishers that were willing to try it as test bed for electronic
scientific journals and also by Kwik that started to be outdated in the web world. Together
with London School of Economics and the Universitat Autònoma de Barcelona “DElivery of
COpyrighted MATerial tot the Enduser” set out to write code.

The objective of the project was to establish highly configurable document servers in three
countries with a free text search and full text retrieve interface that could also be adapted to
local needs. Important components of the resulting servers were obtained in the form of freely
available open source code. The design and the integration of the components were the work
of the project partners. Most of the components implement functions that are also available in
other products that are now available; they will be discussed in section 3 of this paper, while
the glue between the components is discussed in section 4.

When Decomate finished, it was evaluated as excellent. The project partners decided to make
the full source code and documentation freely available. However they also made clear in the
texts and in presentation at the Decomate Conference that support was not included in the
package. Libraries outside the project team refrained from installing the Decomate software.

Fortunately, the good old Hollywood trick worked again: Decomate 2 started in 1998 with the
original participants plus the European University Institute and SilverPlatter. Implementing
the personal Digital Library in Economics took until 2000. The result includes simultaneous
searching in many databases across Europe, doing interesting things with XML. In early 2001
the Decomate owners contracted further development and commercial exploitation with Pica.
The new name is iPort and Thomas Place presents it in another paper and another Ticer
Summer School presentation.

2.4 CONSTANTS IN THESE PROJECTS

It is interesting to reflect on how Kwik, Elise and Decomate used technology to reach their
goals.

It is clear that there are risks in applying quite new technology (in the examples Z39.50,
JPEG, MPEG, Java, SGML and XML). It is also clear that staying with aging technology (e.g.
Windows GUI programming) is more dangerous and much less fun. Clearly, libraries have to
decide which of their concerns can best be handled by waiting for finished, proven products
and which areas they want to tackle with innovative projects.

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

2.4 2002 Ticer B.V.

It is also clear that introducing new technology to end-users takes time and stamina.
Fortunately you do not have to do everything yourself. Productivity is much greater, if you
integrate building blocks supplied by others than when you take a ‘not invented here’ attitude.

Finally, it is strange to see how few dedicated competent people are required to implement
new good ideas. The programming teams were always small; with five good people you can
change the world.

3 COMPONENTS OF SERVERS

Pre print services come in different sizes. As long as the number of documents they are
targeted for is small, say 25000 documents, anything goes. However when it gets interesting
at ten times that size, scalability has to be included in the design from the outset. If any
component of the server cannot be distributed across multiple servers, it is bound to be a
future bottleneck. The only way to be able to distribute components is by having a modular
design, with clean separations in functionality. This chapter describes these building blocks.

3.1 PLATFORM “WHAT SYSTEM SHOULD WE BUY?”

One of the least interesting questions about servers in general is actually asked frequently in
Summer School evaluations: “on what type or brand of computer should you run a pre-print
server?” The typical answer by an informatics specialist will be: “it depends”. A more useful
answer is that it depends on your environment and specifically on what ‘platforms’ are
supported by in-house staff. The reason is that support staff is far more expensive than the
server, and basically every organization has a less skilled support people than it would like to
have.

Unfortunately, there is an exception to the rule. If the software you wish to run is not available
for your locally supported computer platform, it can dictate the introduction of a type of
machine and software that is new to the organisation. You should be really motivated to take
such a decision however. At Tilburg University, ordering a server for streaming video content
to end users was delayed for two years until it could be bought on a supported platform.

There is another problem associated, the challenge of supported but aging platforms. The
question is how and when to start retiring old stuff. In the view of the author, organisations
should review the list of supported platforms annually. If at that moment it is no longer clear
that the platform will have a significant market share in say three years, further developments
in that line should be frozen, so that staff can be retrained early enough, and change processes
cause a minimum of pain.

Currently, there are only two main streams of servers, distinguished by the running operating
system, a version of Unix or a version of Windows. There is no question that the most
scalable and stable servers on the Internet run Unix, but small-scale Windows-based servers
can be successful. Run only one service on a Windows server, to keep it stable. If you want to
run an http server, run Apache and avoid IIS; it is junk. Apache is available for Unix as well
as Windows.

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

 2002 Ticer B.V. 2.5

Unix has more variants than Windows. Of course the support-decides-unless-software-dictates
is true within the Unix world too. If a free choice can be made, the author’s current order of
preference is: Sun Solaris, Linux (Red Hat, SuSE), FreeBSD, IBM AIX, HP-UX and SGI Irix
or SCO Unix.

3.2 STORAGE HARDWARE / SOFTWARE

A rather easy building block for a pre-print server is storage. Storage is used for storing
documents, metadata, software and possibly search indices. The size of storage hardware is
decided by the documents, but the disks that are involved in searching, not storing dominate
the overall speed. The performance of library machines has always been decided by the
number of fast disks and the even spread of disk accesses among them.

While large disk capacity is fairly cheap nowadays, backup facilities that can overnight make
copies of all that disk capacity is rather expensive. At Tilburg University there is a trend to no
longer want local copies of all documents. If they can be retrieved from a server at a
publisher, why bother?

Software for storage is a bit more challenging than the hardware. Simply storing documents in
a directory structure on some disk file system works surprisingly well if (and only if) the
number of documents per directory is not too big and the documents are static. Big directories
or high volatility destroy the directory caches of the file system. If documents are stored in a
directory structure, you should generally not let that structure be reflected in URLs or other
path descriptions: a mapping that dissociates physical storage structure from end-user
addressing is important if you ever want to change the storage structure.

Once a document store gets truly big, simply storing in directory structures may become
unmanageable. Above some dozens of Gigabytes of documents, the interface between the
documents and the server should be a true database. Examples of this phenomenon are big
mail servers. Big IMAP servers that store mail files in directories are orders of magnitude
smaller than servers that store mail files in a database with appropriate access mechanisms.

3.3 SEARCH ENGINE

Another component that a pre-print server needs is a search engine. Free text searching
traditionally is not something implemented by the big suppliers of relational databases, like
Oracle. Even if the data structures are available, the tools for the management of large data
volumes may be absent. One does not want to rebuild a complete database if a small problem
occurs.

Tilburg University has during its document server projects encountered a number of free text
database environments. It ran some packages itself, but implemented interfaces to other
packages that were available at project partners as well. A clean programming interface (an
API) to a free text database is of major importance. Of course simple speed is another
criterion.

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

2.6 2002 Ticer B.V.

In the last years, Tilburg University Library itself ran production services with a product
called ‘Trip’. This product used to be very popular in Scandinavian libraries and met the
speed/API/management-tool constraints that were imposed on it. Even when product support
was discontinued after the supplier was taken over by another company, it ran without
problems for years.

Recently however, Tilburg decided to move to a new environment. The Danish company
Index Data offers Zebra, which is good and free for a university. The commercial version is
called “Z’mbol”, marketed by Fretwell-Downing Informatics. It has facilities not only for flat
textual data but also for textual data structured as:
• Bibliographic MARC records;
• XML Data;
• Government Information Locator (GILS) records;
• World Wide Web documents;
• Encoded Archival Description (EAD) records;
• Dublin Core records;
• Mail archives and USENET news directories;

Index Data positions itself however mostly as a company that is an expert in Z39.50 This
paper discussed that in section 4.1.

3.4 USER CLIENT

UNIVERSITY End-users need an environment to search and retrieve documents that reside on
servers. Indeed, the Kwik project motioned in section 2.1 was done to make this environment
by implementing client software for the Windows desktop platform that was at that time
already perceived as “doomed to be successful”.

When soon afterwards the WWW exploded, its browsers became the de-facto client tools for
accessing documents. Many organisations including Tilburg Library made decisions that
formalised the situation: services shall be web based unless there are very hard motives for
other solutions. These decisions have turned out to be remarkably long-lived. There are no
signs that anything can replace pre-loaded browser plus plugins; except newer pre-loaded
browsers with newer plugin software. This has serious consequences for the digital document
formats that libraries can reasonably use, or accept from publishers (see chapter 5).

As is widely known, the Microsoft Internet Explorer has taken over the leading role at the
desktop from the Netscape Communicator. Fortunately, Microsoft is quite active in
implementing XML in its browser, as is Mozilla that comes from the Netscape heritage.
Opera has its dedicated user group who boast small size and speed but in the world at large
few seem to care about those. Most people love ‘features’ more.

3.5 USER INTERFACE

Implementing a good user interface is relatively easy; designing it is very hard. One of the
problems is that different people have different tastes, and every person is an expert on his
own preferences.

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

 2002 Ticer B.V. 2.7

Technical people tend to get rather tired of user interface discussions and pull back on
statements like: “you tell me what you want and I’ll make it” or “I have no taste”. Graphical
designers like to throw all restraints in the air. Loading the Tilburg University internal
homepage involves opening some 50 connections and place heavy graphical elements at the
left side of the screen. Apparently users of small screens are no target group (the author of this
paper is an expert on his own preferences).

Search and retrieve specific user interfaces for non-specialist end-users might take into
account what their users have always done. Even if the Dublin Core is a small subset of
traditional catalogue title descriptions, users typically use words from a title, or they search
the author name. In free text searches they go for a few keywords with an implied ‘and’ in
between.

The far most important search and retrieve tool that reached public awareness in the last years
is www.Google.com. Its user interface is very sparse, yet extremely intuitive, and it actually
delivers. The interface for the Decomate iPort library environment has an equally simple
initial search screen. It also feels natural. Perhaps the lesson is that user interfaces need to be
as simple as possible for the targeted user group.

4 THE GLUE BETWEEN BUILDING BLOCKS

One of the reasons why building blocks exist is scalability. This was mentioned already in the
introduction to chapter 3. Distribution of documents and search databases across multiple
servers implies that these components need to communicate to each other. This means that
network communication is required, and that clients and servers need to use data formats for
sending and receiving messages.

Given the choice for web browsers with plugins as the user client, obviously http plays a role
as a communications protocol. Http is a quite lightweight protocol, which imposes little
structure on the transferred content. In principle, not only the transfer of retrieved documents
with various Mime types to the end-user can be done over http. All communications that has
to do with searching and inter-server communications could be done over http as well.

Yet, certainly in the library world, another specialised protocol is popular. It is Z39.50 and it
played a fine role in many of the projects of the last years. It will be discussed in the next
section. Z39.50 is a Search and Retrieve protocol. Yet, not all glue that connects the building
blocks of servers is about document transfer or search and retrieve. Another function is that of
traffic coordinator between servers. Certainly in situations where one user query leads to
interaction with multiple search engines on multiple servers, such a traffic coordinator server
is important. The iPort server knows such a server, that dispatches queries to other servers and
that also implements the user interface.

Messaging among servers is not only in terms of Z39.50. The structure in message protocol
can very well be modelled with the flexible, yet precise structures of XML. SGML and XML
are discussed in chapter 5.

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

2.8 2002 Ticer B.V.

4.1 Z39.50

Z39.50 is not a lightweight protocol. In its full form it is complex and feature rich. An ISO set
of standards for search and retrieve exists, The most important is ISO 10162, which was
deemed really too complicated when people started writing code. That started the
development of Z39.50 in the late 1980s. The first version was briefly successful, being
implemented in WAIS. Like Gopher, WAIS became obsolete when the WWW started.

In 1992 version 2 of Z39.50 was defined. It is usually described as a ‘clean superset’ of ISO
10162 Search and Retrieve. In 1995 Z39.50 Version 3 replaced V2. It again was a superset.

The main functions that a Z39.50 client (or origin) can ask from a server (or target) reflect
typical search patterns. After an initialise, a search is done. The result of a search is a so
called result-set, but this set is typically not immediately sent back to the client. Instead the
number of hits is returned, so the client can do new searches, possibly combining result sets
with new narrowing or widening search terms. One or more calls to the present function
retrieve subsets from the result-set, e.g. in groups of 20. The delete-result-set function does
what its name implies. Result sets can live long. They exist to survive between subsequent
interactions between client and server. Implementations can of course actually destroy every
result-set immediately and recreate it with the following query, but the protocol was designed
with a ‘stateful’, ‘session oriented’ approach in mind. This is unlike http connections to
WWW servers, which are stateless one-trick ponies.

A quite useful function in Z39.50 is explain. It asks a server what data structures it contains.
Unfortunately it is often not implemented (although it was available long ago in CMU’s
Mercury). One of the reasons why Z39.50 became popular with its users is that a client can
speak only one search retrieve protocol, while the complexities of the search engines that live
behind the Z39.50 target remain hidden.

This does not mean that there are no challenges with Z39.50 itself. One of the issues stems
from the semantics of textual data. Library users like to search, say for authors. If the server
has no concept of which part of its data is about the author, it cannot look specifically for a
situation where ‘van Tilburg’ is an author instead of a reference to the city with that name.
Library history has given us an extended list of catalogue formats, which indicate author
fields. Many of these formats have been implemented in Z39.50 ‘record syntaxes’ which are
defined in so called profiles. Essentially all Marc formats exist; there is a complicated ‘true’
record syntax called GRS-1 for Generic Record Syntax. At the other end of the spectrum there
is SUTRS, Simple Unstructured Text Record Syntax otherwise known as flat ASCII. Simply
too many Z39.50 profiles exist. This variety makes interoperability difficult. An important
development is that all implementations should support at least one profile called ‘Batch’
which is in the process of standardising it. The iPort implementation supports in principle all
Marc formats, SUTRS, GRS-1 and XML. Batch will be there once it is stable.

The Z39.50 V3 version has done well for the past 6 years. In June 2001 a proposal called
‘ZNG’ for Z39.50 New Generation was formulated. For some the aim is to bring Z39.50 back
to the desktop by simplifying the protocol and using http. Others concentrate on allowing
‘soap (a kind of remote procedure call; heavily supported by Microsoft) as a transport. Early
versions of the protocol called it “Z39.50 over XML” and although the name did not stick, it

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

 2002 Ticer B.V. 2.9

is clear that Z is not dead. Good keywords to feed Google for finding out how ZNG is doing
are: ZNG, ZIG and eZ3950.

Tilburg University uses Index Data YAZ; obviously it works nicely with Zebra/Z’mbol from
Index Data.

5 FORMATS

Even without librarians inventing new ones, the world of documents knows many formats.
This chapter explores where librarians should adopt existing document formats and where
their contributions make a positive difference.

Anyway, document formats supplied to library end-users should keep our choice for the user
client in mind, the WWW browser plus plugins. Publishers who supply documents to a library
should be forced to use formats that fit in this scheme.

In the opinion of the author any document standard that is expressed in a non-textual binary
form should be taken as it comes, from elsewhere in ICT. Textual information however (only
slightly exaggerating) is either metadata, which is core business for librarians, or it can be
peppered with metadata by tagging it with more information, making it metadata, or it is free
text that librarians can throw search engines at.

The richness of textual data is nowadays the target of one of the most interesting
developments of the last couple of years: XML. An overview is given in section 5.1. Binary
documentation standards that librarians should simply use based on their position as a de-
facto standard include GIF and JPEG for stills, PDF for printed pages packaged electronically,
and mp3, MPEG and Real for song and dance.

One aspect of document standards is the size of typical documents. For a long time size
mattered when disks were small and expensive. This phase has passed. Some people say that
communications speeds still limit what documents can realistically be transported to the end-
user. This is actually true in the third world were universities can be connected to the Internet
with 64 kbps lines. Generally however it is no longer true. With cable-modems and xDSL
already reaching homes and Fibre To The Curb (or Home) being planned in many countries,
new Digital Library applications should no longer feel constrained by datacom speeds even if
video documents fill DVD disks.

5.1 SGML AND XML

Historically, one of the first activities undertaken by Ticer has been a symposium on SGML,
organised together with Elsevier Science. Elsevier was one of the early publishers who
adopted SGML tagging to mark-up publications. As is common in an SGML environment
they had developed their own set of tags, rigorously defined in a so-called Document Type
Definition or DTD.

SGML is already quite old. Its roots can be traced back to a research project that started in the
late sixties within IBM: GML was in 1969 called after Goldfarb, Mosher and Lorie. In 1986

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

2.10 2002 Ticer B.V.

standardisation led to “ISO 8879 Standard Generalized Markup Language (SGML)”. In the
early years probably the biggest users were in aviation and the military. In the academic world
TEI became well known, the Text Encoding Initiative which aimed at defining a DTD for
natural languages.

In the mid-nineties, SGML was still something for specialists. Even if a growing number of
libraries received metadata from a growing number of publishers, the average library user, or
even the average library staff member could ignore the technology.

XML has changed the field rather dramatically. Actually XML is a form of SGML, so why is
it hot? The reason is in the importance and the shortcomings of the World Wide Web.

The native document format of the web, HTML is a tagged language. In theory and by
definition the tag structure of HTML is an instance of SGML, but in real life HTML is
actually defined not by its DTD, but by the behaviour of web browsers like the Internet
Explorer and the Netscape Communicator. Even the reaction of the various browser brands
and versions on receiving well-formed HTML is different. The browsers unfortunately have
always tolerated faulty HTML: they try to make the best of erroneous documents, motivating
generators of HTML not to correct mistakes. The result is a mess, perhaps best characterized
by infamous statements like: “This page is optimized for Internet Explorer 5.01”.

Not only the syntax of HTML has problems, the semantics is plagued too. Tags wild wildly
different purposes are used next to each other. The standard example is to compare those tags
that are about the structure of the HTML document (e.g. <p>)and those that are about
formatting (e.g.). When the problems with this aspect of HTML became already pretty
big, while layout designers asked for more, more, more tags, the World Wide Web
Consortium decided to step in. As a stopgap measure they developed a HTML specific
stylesheet language called Cascading Style Sheets (CSS).

This development did not yet really solve the problem of validity checking of HTML. As a
result, HTML remained very hard to maintain. Sets of linked HTML pages and external links
to them had the problem of aging links.

All these problems had to be solved and the W3C, backed up by real programmers that
actually produced working code set up XML and related other standards.

Now that XML was no longer something for specialists or academics, but a standardised
environment with tools and implementations for everyone’s desktop, it also attracted other
subject areas, not in the HTML replacement area. Currently, the author of this text sees new,
real applications of XML at least monthly. They are as varied as log files (that used to be
comma separated lists), configuration definitions of Cisco IP Phones, the visual layout of a
PKI chipcard and a project that makes an inventory of administrative paper forms.

The evolution of XML goes very fast; new tools, new standards and new products outdate any
book that was published before 2001 already in the autumn of 2001. A good current text is
XML, The Complete Reference by Heather Williamson (2001, Osborne/McGraw-Hill). A
better resource to track progress is the web, specifically http://www.w3.org/ Almost half of

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

 2002 Ticer B.V. 2.11

the 45 working groups listed on this page are directly related to ongoing or finished XML
topics.

Some important ones are:
• XML: a catchall group; note the link farms at “XML software” and “Bookmarks”.
• XSL and XSLT: the eXtensible Stylesheet Language and XSL Transform for

transformations between XML and other formats.
• XPath: a language for addressing parts of an XML document.
• XLink: XML Linking Language, which allows elements to be inserted into XML

documents in order to create and describe links between resources.
• MathML: foundation for the inclusion of mathematical expressions in Web pages.
• XHTML: suite of XML tag sets with a clean migration path from HTML 4.
• XML Schema: provides a means for defining the structure, content and semantics of XML

documents as an upgrade from DTD.
• DOM: Document Object Model, an API interface that allows programs and scripts to

dynamically access and update the content, structure and style of documents.
• SOAP: exchanging structured and typed XML messages between peers in a decentralized,

distributed environment.

International Spring School on the Digital Library and E-publishing for Science and Technology
CERN, Geneva, Switzerland, 3 – 8 March 2002

2.12 2002 Ticer B.V.

