

IST-2000-25182 WORKING DRAFT 1 / 33

DataGr id

S E C U R I T Y D E S I G N

 Document identifier: DataGrid-07-D7.6-0112-0-1

 EDMS id: 344562

 Date: 15/05/2002

 Work package: WP07: Security

 Partner(s): CERN

 Lead Partner: CERN

 Document status: DRAFT

 Deliverable identifier: D7.6

Abstract: Consistent model of the DataGrid authentication and authorization schemes.

http://edms.cern.ch/document/344562

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 2 / 33

Delivery Slip

 Name Partner Date Signature

From

Reviewed by Moderator and reviewers

Approved by PTB

Document Log

Issue Date Comment Author

0-1 2002-04-15 First draft Ákos FROHNER

0-2 2002-05-16 Doc id., use cases Ákos FROHNER

Document Change Record

Issue Item Reason for Change

Files

Software Products User files / URL

Word DataGrid-07-D7.6-0112-0-2-SecurityDesign.doc

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 3 / 33

CONTENT
1. INTRODUCTION ... 5

1.1. OBJECTIVES OF THIS DOCUMENT... 5
1.2. APPLICATION AREA... 5
1.3. APPLICABLE DOCUMENTS AND REFERENCE DOCUMENTS.. 5
1.4. DOCUMENT AMENDMENT PROCEDURE.. 5
1.5. TERMINOLOGY.. 5

2. EXECUTIVE SUMMARY ... 6

3. OVERVIEW .. 7

4. AUTHENTICATION.. 8
4.1. OVERVIEW OF GRID SECURITY INFRASTRUCTURE.. 8
4.2. MUTUAL AUTHENTICATION.. 9
4.3. SHORT-TIME CERTIFICATES .. 9

4.3.1. GSI Proxy Certificate.. 10
4.3.2. Online Credential Repository (OCR).. 10
4.3.3. Direct Generation ... 11

4.4. DELEGATION... 11
4.5. CERTIFICATION AUTHORITIES... 12
4.6. CERTIFICATE REVOCATION LIST... 13
4.7. SATISFIED REQUIREMENTS ... 14

5. COMMUNITY MEMBERSHIP MANAGEMENT ... 15
5.1. MEMBERSHIP INFORMATION IN GENERAL... 15
5.2. HOW IT WORKS?.. 16
5.3. CAS.. 17
5.4. COMPOSITIONAL COMMUNITIES ... 18

5.4.1. Organisational Membership Service .. 19
5.4.2. Mapping.. 19

5.5. EXAMPLE .. 21
5.6. SATISFIED REQUIREMENTS ... 22

6. ACCESS CONTROL .. 23
6.1. ACCESS CONTROL IN GENERAL .. 23
6.2. HOW IT WORKS?.. 24

6.2.1. Access Control List ... 25
6.2.2. GAA-API... 26
6.2.3. VO-level Roles – Mutual Authorization .. 27

6.3. FILE MANAGEMENT.. 27
6.3.1. Operations .. 29
6.3.2. Compatibility with FTP .. 29

6.4. JOB CONTROL ... 29
6.5. NETWORKING ... 30
6.6. SATISFIED REQUIREMENTS ... 30

7. LIFECYCLE OF OBJECTS .. 31
7.1. CERTIFICATE AUTHORITY... 31
7.2. VIRTUAL ORGANISATION.. 31
7.3. GROUP AND ROLE... 31
7.4. RESOURCE AND SERVICE .. 31

7.4.1. CA based solution ... 31
7.4.2. Host based solution... 31

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 4 / 33

7.5. USER... 32
7.6. PERMANENT OBJECTS... 32

8. ANNEXES.. 33
8.1. ENTITY, GROUP AND ROLE REPRESENTATION.. 33
8.2. ACCESS CONTROL LIST... 33

8.2.1. XML Representation ... 33
8.2.2. ACL API.. 33

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 5 / 33

1. INTRODUCTION

1.1. OBJECTIVES OF THIS DOCUMENT
Based on the D7.5 Security Requirements document we intend to describe a consistent model for
authentication and authorization in the European DataGrid tools and services. The model should be
applicable to every work package service. It is also desired that our solutions will be compatible with
other grid projects.

1.2. APPLICATION AREA

1.3. APPLICABLE DOCUMENTS AND REFERENCE DOCUMENTS
Applicable documents
[A1] Security Requirements And Testbed 1 Security Implementation

DataGrid document can be found by going to the DataGrid web page at
(http://eu-datagrid.web.cern.ch) and selecting the relevant work package.

Reference documents
[R1]

1.4. DOCUMENT AMENDMENT PROCEDURE

1.5. TERMINOLOGY

Definitions

Glossary

http://eu-datagrid.web.cern.ch/

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 6 / 33

2. EXECUTIVE SUMMARY
If necessary, this is one or two pages executive summary. It contains an adequate description of the
conclusions or results.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 7 / 33

3. OVERVIEW
A beginning is the time for taking the most delicate care that the balances are correct.

In the Grid projects the biggest challenge is to face the scalability problems. We have to deal with
large virtual organizations spanning over several countries and thousands of machines, while trying to
make the whole system quick, flexible, responsive and robust.
To achieve responsiveness and improve robustness, we should make local decisions, based on
information available locally. To achieve flexibility and optimize the large-scale performance we
should make global decisions, based on information available in the distributed system. To find the
balance between these approaches we have to consider the information flow: when and where is a
piece of information updated and when and where should it be published.
This document we will focus on security, but issues discussed here are in close connection with every
piece of the DataGrid project. It affects the internal logic of several services and even the architecture
and interaction of some other pieces.

The basis of the Grid security infrastructure is the Public Key Infrastructure (PKI). Once a web of trust
is set up (trusted certificate authorities, etc.), it can be used to prove the validity and integrity a piece
of information without contacting the issuer of this data. We will use it to transfer authentication and
authorization information.
Once this information is sent to a site it can be validated “offline” reducing the dependency on the
source of the information – it will improve the speed and robustness, because we will not have to
contact it every time. By setting constraints on the validity we can trigger the expiration of
authentication and authorization information. This will help to keep the overall system up-to-date.
We have to set these validity constraints (e.g. expiration time) carefully, thus it would satisfy the
security requirements, but not generate too much traffic in the overall system.

To understand the overall structure we have to see the process in details:

• Authenticate a user at a service
• Gather additional information associated to the user or the actual session (e.g. group

membership, role, time – see [A1] for details
• Gather additional information associated to the protected service or object (e.g. file

permissions)
• Get local policy applicable to the situation (e.g. temporarily disabled user)
• Make an authorization information based on the identity and the additional information

To give a scalable solution we have to express the information flow: when and where is a piece of
information updated (also created and deleted) and when and where is it used. Chapter 4 describes the
authentication process, Chapter 5 the gathering of user related information and Chapter 0 the rest of
the information sources. Chapter 7 discusses the lifecycle of the principals in the DataGrid project
giving information about the update schedules of the information associated with them.

In this document we don’t intend to discuss accounting, auditing and non-repudiation, because these
issues are closely related to the logging and monitoring of services. We do not intend to discuss
confidentiality in detail, because it can be achieved by careful setting of permissions, if the
information is available at the decision making point (e.g. from where does the user log in). We also
do not intend to discuss integrity in detail, because this should be solved at service/application level.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 8 / 33

4. AUTHENTICATION

4.1. OVERVIEW OF GRID SECURITY INFRASTRUCTURE
The Grid Security Infrastructure (GSI) is Globus’s implementation of the GSSAPI. GSSAPI is defined
in the Internet RFC 2743 [R2]. It is based on asymmetric cryptography used in a "Public Key
Infrastructure" (PKI). Asymmetric cryptography allows users to communicate securely without the
need for a prior confidential channel to exchange the encryption key. Exploiting features of a specific
class of mathematical challenges that are easy to create but virtually impossible to solve (like
factorising large prime numbers), end-entities generate a complementary set of keys: a "private key"
that will be kept secret and a "public key", that is broadcast to the world. Data encrypted with the
public key can only be deciphered with the private key (and vice versa). Thus data confidentiality,
message integrity and non-repudiation can be achieved with the two keys of the key pair.
A PKI is used to uniquely bind an identifier to a specific public key together in a "Certificate". The
identifier can represent any entity: a human being, a host on the Internet or a Grid service. Anyone
wanting to communicate to another entity on the Grid can obtain their certificate and use the public
key contained in it to send messages that can only be read by the original owner – who has knowledge
of the private key needed to decipher the message. But the sender must first be sure that the intended
recipient is indeed the holder of this private key. Therefore a trusted third party digitally signs the
certificate: the Certification Authority (CA). The CA certifies with its signature that the identifier
contained in the certificate is a truthful representation of the identity that possesses the associated
private key. The CA's digital signature is again based on public key cryptography.

The Grid Security Infrastructure (GSI) is based on public key cryptography. Its primary motivations
are (quoted from http://www.globus.org/security/):

• the need for secure communication (authenticated and perhaps confidential) between elements
of a computational Grid;

• the need to support security across organizational boundaries, thus prohibiting a centrally-
managed security system;

• the need to support "single sign-on" for users of the Grid, including delegation of credentials
for computations that involve multiple resources and/or sites.

Every user and service is identified by a certificate encoded in the X.509 format, which contains:
• a subject name, which identifies the user;
• the subject’s public key;
• the identity of a Certificate Authority (CA) that has signed the certificate to certify that the

public key and the identity both belong to the subject;
• the digital signature of the Certification Authority (CA) certifying that the public key belongs

to the user.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORK

4.2. MUTUAL AUTHENTICATION
Two parties may authenticate one another
using mutual authentication, if they trust the
CAs that signed each other’s certificate. If
they do trust the other’s CA, they will then
have copies of the other CAs public keys.
To mutually authenticate, the first person
(Alice, client) establishes a connection to the
second person (Sue, service). To start the
authentication process, Alice gives Sue her
certificate. The certificate tells Sue who
Alive is claiming to be (the identity), what
Alice's public key is, and what CA is being
used to certify the certificate. Sue will first
make sure that the certificate is valid by
checking the CA's digital signature to make
sure that the CA actually signed the
certificate and that the certificate hasn't been
tampered with. (This is where Sue must trust
the CA that signed Alice's certificate.)
Once Sue has checked out Alice's certificate,
Sue must make sure that Alice is really the perso
message (challenge1) and sends it to Alice, as
using her private key, and sends it back to Sue.
this results in the original random message, then
she is in possession of the private key to prove it
Now that Sue trusts Alice's identity, the same op
certificate; Alice validates the certificate and s
encrypts the message and sends it back to Al
original. If it matches, then Alice knows that Sue
At this point, Alice and Sue have established a c
each other’s identities.
Note that GSI uses the Secure Sockets Layer (SS

4.3. SHORT-TIME CERTIFICATES
The main advantage of the PKI authentication i
the other party’s CA to validate its certificate. In
known before any authentication happens, thus
the authentication can be established without con
The system has only one weakness: if someone
stolen identity and prove it successfully in a mu
key is discovered it can be revoked (the signer
however contacting the CA for the revocation
advantage of the system.
To overcome this limitation we use the following

• the certificate revocation lists are cached
ING DRAFT 9 / 33

n identified in the certificate. Sue generates a random
king Alice to encrypt it. Alice encrypts the message
Sue decrypts the message using Alice's public key. If
 Sue knows that Alice is who she says to be (at least

).
eration must happen in reverse. Sue sends to Alice her
ends a challenge (2) message to be encrypted. Sue
ice, and Alice decrypts it and compares it with the
 is who she says to be.
onnection to each other and are certain that they know

L) for its mutual authentication protocol.

s that the parties only have to know the public key of
 a typical system the trusted certificates authorities are
their public key can be cached at every site. It means
tacting any online third party service.

steals the private key, then he will be able to claim the
tual authentication process. Once the loss of a private
CA puts it on the list of revoked certificates – CRL),
 list at every authentication will eliminate the main

 solutions:
 (open issues are in 4.6)

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 10 / 33

• authorization system for immediate actions (e.g. disable a certain user)
• short-time certificates

Short-time certificates are normal certificates with a very short expiration time, typically 12-24 hours.
This expiration time is the typical update period of a certificate authority, thus it makes no sense to
revoke such a certificate, because the CRL would be probably update only after the expiration time of
the certificate. This practical, best-effort solution eliminates the need for the complex CRL update
mechanism and also minimizes the impact of stolen private key (especially if the loss is not marked).

The limitations of short-time certificates:

• they cannot be used to sign or encrypt a document, because they are not registered at any place
• they can be difficult to use with services, because it would probably need a restart there

How to get this short-time certificate?

- get a long-time from a certificate authority and generate locally (Globus)
- store a long-time certificate in a server and generate it there (MyProxy/OCR)
- get it directly using another authentication method (kx509)

4.3.1. GSI Proxy Certificate
The usual approach is to get a long-time (1-2 years) certificate from a certificate authority and
generate a short-time certificate (called proxy certificate) locally using the GSI delegation mechanism
(see 4.4). This is the currently supported mechanism using the grid_proxy_init command. This method
implies the local storage of the real certificate, which is convenient for users using a single machine or
a central filesystem.
The identifier of the new certificate indicates that it is a proxy ("CN=proxy" string is added to the
original identifier). This new certificate is signed by the owner, rather than a CA.

4.3.2. Online Credential Repository (OCR)
In order to create proxy certificates, the user must have access to her private key. Often, this problem
is solved simply by storing the password-encrypted key in a file in the user’s home directory. This
simple approach puts the burden of key-management on the user, who may not be able or willing to
effectively protect her key from compromise or loss. Some users need to access the Grid from many
independent devices; the secure distribution of the private key to all these devices would be difficult.
Sometimes a user needs multiple credentials to access different services, which only increases her
burden.
An online credential retrieval system (like MyProxy, see http://dast.nlanr.net/Projects/MyProxy/)
stores the users’ credentials (certificates and private keys) in a central repository, and automatically
issues proxy certificates on the users’ request. This centralized credential database considerably
simplifies the tasks of both the security administrator and the user base, while at the same time
improving the security of the whole system.
The OCR (On-line Credential Repository) may also help when a job takes an unexpectedly long time
to finish. The proxy certificates of long-running jobs may expire before the job finished execution. By
contacting the OCR server and authenticating with the nearly expired credential, the job may request a
proxy with extended lifetime without user intervention (WP1, see Security for Resource Management
and Related Services at http://lindir.ics.muni.cz/dg_public).

http://dast.nlanr.net/Projects/MyProxy/
http://lindir/

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 11 / 33

The planned improvements in the credential repository:
• standardised protocol for normal and administrative commands
• performance and reliability improvements on the server side (database backend and replicated

services)
• support for various authentication schemes (e.g. one time password, Kerberos)

4.3.3. Direct Generation
For organisations with well-established authentication systems it can be a viable approach to reuse
their existing methods. They could reuse their existing user registration processes to register new
certificate requests and distribute the signed certificates, just as they do it with simple user accounts.
A more efficient way is to trust their existing authentication systems to associate identity to on-line
certificate requests. In this case the user basically generates a normal certificate request, but only for a
short-time certificate. The user authenticates this certificates request using a local mechanism (e.g. by
giving a valid username and password). An on-line certificate authority checks this local
authentication and signs the request with its private key. This way the user gets its short-term
certificate without a long-term one.
Such an on-line certificate authority should be trusted to sign only short-term certificates.

The idea was implemented using Kerberos as the local authentication mechanism at the Michigan
University: they have created a special on-line certificate authority (KCA), which turns kerberos
tickets into short-term certificates (see http://www.citi.umich.edu/projects/kerb_pki/).

4.4. DELEGATION
The current version of SSL/TLS does not include a method of credential delegation. Hence, Globus
included a mechanism in GSI, which is based on creating a new user proxy certificate over the
SSL/TLS channel.

The delegation process is basically an on-line certificate signing procedure, where the user acts as a
CA and the service (where the credentials are delegated) acts as the user. To see the process in details

http://www.citi.umich.edu/projects/kerb_pki/

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 12 / 33

we describe a situation where Alice (client/user) wants to delegate her credentials to a remote service
(Sue), for example to access her files from that remote computing element.
At the beginning of the delegation process Sue generates a new (proxy) certificate locally. The subject
of this proxy is the same as the subject of Alice’s original certificate (what she used for the
authentication), with “/CN=proxy” added to the name. The typical life of this new user proxy
certificate is 12 hours.
Sue sends a certificate request (public key and identity information) to Alice, who checks the content
and signs it with her private key. Alice sends back the signed certificate to Sue, who can then use it to
utilize Alice’s delegated rights. The most important fact in this complicated process that the private
keys will not cross the network, even if the communication is encrypted!

If Alice doesn’t want to delegate her full identity then they have to negotiate a restricted proxy
certificate. It is a proxy certificate, with a restriction section added after the identity section. This
restriction has to be negotiated before the first step, thus Sue could put it in the new certificate and in
the certificate request. The content of such restrictions are application specific.

The text above described only one delegation, however the user’s identity can be delegated many
times as she goes around in the system. This would process would create a delegation chain, which
have some important aspects to note:

• A delegation chain can be validated only if all the certificates are present. In a simple case the
certificate of a CA is distributed to every host, but the certificate of the users are not! The
certificates, above the current delegated certificate (C_u, C_1, … C_n-1), has to be passed to
the service in an authentication (see 4.2).

• A delegated certificate cannot have more right then the certificate above. It means the
restrictions are applied to all the subsequent delegated certificates and the expiration time of a
delegated certificate cannot be longer then any of the certificates above it.

The first aspect is mostly an implementation detail, but it is significant to note that delegation can
make the validation of a certificate very complex.
The second aspect is an important restriction, since we start from a short-time certificate, thus in a few
delegation step we might end up with certificates, which last only for a few hours, while we want to
run jobs for weeks. To overcome this limitation we can introduce renewable certificates (see 4.3.2).

4.5. CERTIFICATION AUTHORITIES
Note that the policy on which CAs are to be trusted within DataGrid is determined by the WP6 CA
Coordination group, and is not carried out by the SCG.
It has been decided to limit the number of CAs considered trustworthy for user and system
authentication.
The WP6 CA Coordination Group is in charge of making recommendations to the Testbed 1 (TB1)
administrators on which CAs are to be trusted. The group has analysed and discussed the Certificate
Policies and the Certification Practice Statements (CP, CPS) published by the CAs – which describe

CA
Sc Cc

User
Su Cu

Proxy-1
S1 C1

Proxy-n
Sn Cn

signatureC signatureU signature1 signaturen

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 13 / 33

their operative procedures and security practices – with particular attention to the mechanisms used to
authenticate the users’ requests. The results are summarized in two matrices: CA Feature Matrix and
CA Acceptance Matrix (http://www.cs.tcd.ie/coghlan/cps-matrix/cps-matrix.html).
The following CAs have been included for TB1 authentication:

• CERN,
• Czech Republic (CESNET),
• France (CNRS),
• Ireland (TCD),
• UK (GridPP),
• Italy (INFN-CA),
• Portugal (LIP),
• Netherlands (NIKHEF),
• Nordic Countries (NBI),
• Russia (Moscow Universities),
• Spain (IFAE).

The distributed CA model has been validated using cross-domain submission of jobs on the Grid in
May 2001.
The web of CAs has nothing to do with the virtual organisations. Having a certificate signed by one or
other CA will not tell us anything about VO membership. These are independent factors.

4.6. CERTIFICATE REVOCATION LIST
The update of certificate revocation lists must happen for every configured certificate authority
regularly, but it must not be a bottleneck in the whole system. Currently we simply pull the list from
the publication URL (at the CA) at every system, which trusts a particular CA.
The problem with this approach is that it will not scale to 10.000 of machines and irregular update
periods for the CRL.
To scale up to 10.000 of machines we will have to use a hierarchical update mechanism.
To handle irregular updates the ideal solution would be “push” mechanism: every interested site
subscribes to the CA and when the CRL is updated, it is also sent to every interested site. This update
must be asynchronous, to gracefully handle network failures. However such an asynchronous update
may even fail, so we would probably have to use the pull method as well.
The simplest (and proven to be scalable) implementation would be a mailing list for the “push” model
and a newsgroup for the “pull” model. A mailing list is asynchronous and can handle large number of
subscriptions. The news system has a well-established update model for large number of “readers”
without a single central server.

idea: create PAM modules to make it automatic and hide it from the user
open issues

- long running jobs, but short lifetime certs -> MyProxy extension from WP1
- Forwarding and copying certificates

Authentication at various services:
- grid services: GSI
- web server: SSL (problem with proxy cert)

http://www.cs.tcd.ie/coghlan/cps-matrix/cps-matrix.html

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 14 / 33

- mail/list: signature on the mail
- Login?
- File systems?

Areas to investigate: Kerberos, Windows, MS-Passport, Web-Services security

4.7. SATISFIED REQUIREMENTS
The satisfied requirements from D7.5

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 15 / 33

5. COMMUNITY MEMBERSHIP MANAGEMENT
Once a user (or any other principal) is authenticated we come to the phase of authorization. In an
authorization decision there are typically three main groups of information are used:

• Information associated to the user or the actual session.
• Information associated to the protected service or object.
• Local policy applicable to the situation.

In this chapter we focus on the first set, but here we give a description on where are they managed.

The attributes associated with a user are typically organisation or group membership information, a
specific role assigned to the user or any additional attribute, like if she has signed the policy agreement
of the virtual organisation. Most of this information is managed by the real organisations.
Permissions associated with protected objects are for example the read and write permissions on a file.
This kind of information should be kept close to the protected object to avoid inconsistencies and be
able to scale up, even if fine-grained access control is required.
To handle global decisions we have to provide a access point for the administrators of the virtual and
real organisations. The most straightforward way is to let them create policies, which are applicable to
individual authorization decisions. Such global decision can be to temporarily disable a user, who was
abusing a service.

5.1. MEMBERSHIP INFORMATION IN GENERAL
At a given resource or object we would like to specify the set of users, who can make a certain
operation, e.g. reading a file. To be able to handle large number of users, we have to group them
somehow (not to put every user in an ACL) and test for the membership of a group, when a given user
accesses the object.

In a UNIX like system the group membership information is assigned to a user, when she logs into the
system. The login process authenticates the user, and then looks up the various directory services
(passwd file, NIS, NIS+, LDAP, etc.) for group memberships. The set of groups – where the user is a
member – is assigned to the initial process in kernel space, thus this information can be trusted. During
the session every permission check is based on this structure without looking up the group
membership services.

VO policy site policy

file
ACL

VO membership,
group, role

read a file

virtual organisation organisation

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 16 / 33

In AFS the authentication process (Kerberos) is separated from the group membership lookup, which
happens when a file is accessed. AFS provides its own group service in the protection server
(ptserver), which provides mapping of Kerberos principals to AFS users and groups.
In Windows 2000, during the Kerberos authentication, the membership information is also gathered. A
Windows 2000 KDC collects the user’s security identifier (SID) and the security identifiers of the
groups she belongs to, and places this list into the Kerberos ticket’s authorization data field. The
content of the tickets are protected by cryptography methods, thus this information can be trusted.
During the session every permission check is based on the list of SIDs, once a user successfully
authenticated itself to the service using the standard Kerberos method.

For the membership management in the grid we would like to combine the power of “offline”
validation provided by PKI, with the methods above: at the beginning of a session the grid user
acquires its group membership information, which will be stored in a restricted certificate (the
restrictions are the groups and roles). The content of this restricted certificate would be signed by the
membership service of a VO, thus the services could trust this information, given they trust the
signature of the membership service. During the session every permission check would be based on
the list of groups in this restricted certificate.

5.2. HOW IT WORKS?
The mechanism behind this kind of authorization is similar to the authentication system: a trusted
service (CA in authentication; CAS in authorization) signs a set of information (user’s identity; user’s
groups) with its private key, thus its validity can be checked at the services using the public key of this
service. This new certificate will be basically a restricted proxy certificate, which is “delegated” to the
user (see 4.4 for details):

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 17 / 33

Since this is a delegation the same rules are applied: the lifetime of the authorization certificate can not
be longer then the lifetime of the credential it is based on, which is typically 12-24 hours (proxy
certificate or Kerberos ticket).
In the restrictions section (x509.3 extensions) the following information shall be placed:

• DN of the original user, for accounting, auditing and logging purposes at the services or for
fine-grained, user level authorization.

• VO identifier, which could be the DN of the issuer service. It would sign that the user is a
member of this virtual organisation. It will also let the user to pass multiple authorization
credentials (belonging to different VOs) to a service, which could choose the appropriate one.

• Sequence of the groups, where the user is a member – all of them.
• Sequence of the roles, what the user requested. Some roles should be requested explicitly by

the user (e.g. administrative roles), maybe with some additional authentication.
• URI of the issuer membership service. This would provide a “callback” reference for a

Computing Element if it runs a long job and the authentication and authorization credentials
has to be renewed.

The encoding of the role and group membership information is an open issue.

One opinion (Cal, Andrew) is to preserve the “type” information by encoding the group and role
information into a structure, which could be represented in XML for example like this:

<group>
<vo>/O=Grid/OU=DataGrid</vo>
<groupname>CMS</groupname>
<group>

<role>
<vo>/O=Grid/OU=DataGrid</vo>
<rolename>replica-admin</rolename>
<role>

(of course it would be ASN.1 encoding in a x509.3 certificate)
It would only affect the handling of this information in the services. This additional “type” would let a
service to handle users, groups and roles separately. Also it would make the handling code more
complex in most cases.
Therefore the other opinion (me ☺) is to treat groups and roles (and whatever comes later) as first
class principals in our authorization system and assign them a unique DN in the namespace of the
virtual organisation:

/O=Grid/OU=DataGrid/Group=CMS
/O=Grid/OU=DataGrid/Role=replica-admin

It would simplify the handling of this information and also the management interface.
As a unification of these opinions, we can call these pieces (user’s DN, VO’s DN, group and role
name) capabilities and make distinction later only if it is necessary.
This membership service would effectively replace the virtual organisation’s LDAP server by
providing the same information in a more secure format. Actually the current LDAP server might
become the backend database of this service.

5.3. CAS
The Community Authorization System (CAS) from the Globus team does almost what we expect from
a membership service, but it does a bit more. The CAS server internally maintains its own database of

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 18 / 33

users and groups, but it also maintains information on protected objects, providing the very last step of
the authorization as well. It basically means that a service gets a “yes” or “no” decision every
protected object, so its only purpose is to apply the decision.
We believe this approach have some problems:

• Doesn’t scale well, if millions of files have to be protected at hundreds of sites.
• May loose consistency with the protected objects: for example a file server looses the

connection with the CAS server and a given file is deleted and later added by another user
(with the same name). If the original owner meanwhile asked for a write-permission, it would
be granted for 24 hours, although the file is already owned by somebody else. A dumb file
server would still accept the original owner.

• No place for local decisions and permissions: for example a local administrator might deny
access for a certain user for abusing a service. A local administrator might also allow access
for local users, who are not member of any virtual organisation.

In summary we would need less features in CAS, it should simply put the VO and group membership
information into the created certificate. It should also put the DN of the original user into this
certificate.
The good news is that we could start experimenting using the existing CAS server by placing pseudo
objects into its database; quote from Laura Perlman:

You can actually get this functionality now, without any modifications to CAS, if you
consider "claiming membership in a group" to be an action:

1. Once, on the CAS server, create a service type (say, "edg_group_service") and add
the allowable actions (say, "claim_group_membership" and
"claim_role_membership") for that service.

2. For each group that you want to create:

- create a new object inside the CAS associated with the group

- create the new group

- grant "edg_group_service/claim_group_membership" permission on that new
object to the group

- populate the group within the CAS as usual

Then when you're evaluating the ACL, instead of asking "is this user a member of group
XYZ", you'd ask "does this user have the right to assert membership in group XYZ".

The described solution would provide us the possibility to start working on the authorization solution
in the services. We could then wait for the proper solution from the CAS team or write our own
version.

5.4. COMPOSITIONAL COMMUNITIES
Looking at the other side of the membership service we could find similar problems to the protected
objects. A virtual organisation is a composition of real organisations (or their subgroups) providing a
common interface for the unified set of resources for all of their users. But where do these users come

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 19 / 33

from? They are (typically) members of the real organisations, where they are already registered and
placed in various groups.
We should avoid the replication of this membership information:

• To scale up to large organisations with ten thousands users.
• Keep better consistency with the current database.

(Of course these are not hard constraints, since ten thousand records can be replicated easily and the
membership databases are usually updated only on a daily schedule, but we should keep in mind that
here could be a problem in the future.)

5.4.1. Organisational Membership Service
The easiest way of avoiding the replication is to provide the membership service by the organisation
itself. The local management can put a thin layer in front of their user management database, which
implements the protocol of the membership service and encodes the internal membership information
in the virtual organisation’s format.
This thin layer would be based on the local authentication method, because it would gather the
membership information from the local database (group file, NIS, NIS+, LDAP, Active Directory,
AFS ptserver, etc.).
This service could even provide the first short-time certificate (see 4.3.3 for a Kerberos solution) for
the user solving the management problem of long time certificates.

5.4.2. Mapping
The organisation group names has to be mapped into the virtual organisation’s common group names.
For example the LHC virtual organisation would have two real member organisations with similar
group structures:

• CERN: CMS and ALICE groups
• INFN: g-cms and g-alice groups

The members of these groups would be naturally mapped into the CMS and Alice groups in LHC.
Both CERN and INFN could configure their local services to put these names into the issued
membership information.

Problem 1: What happens if any of them participate in another virtual organisation, where the groups
should be mapped to other names?
One possible solution is to add this new configuration to the local service and let the user select the
appropriate one when requesting an authorization certificate. Every organisation has to modify its own
mapping, which participates in the new VO.

Problem 2: In a virtual organisation every service has to accept the authentication and authorization
certificates signed by the users’ certificate authorities and membership services. If a new organisation
is added to the existing VO, then every organisation has to update its own trust database to include the
certificates of the new one.
One possible solution is to provide this list (or the URIs of the certificates) at a central place in the
VO, thus every member could update its database based on this reference.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 20 / 33

There is another solution for these problems: bringing back the membership service, but with a
different purpose. It should provide

• a mapping from various organisational groups to the common group names, and
• serve as a central point of trust – the services has to trust only this certificate.

Using this central mapping service, the “login” to the virtual organisation becomes a two-step method:

The detailed steps of these certificate delegations are in 5.2 and 4.4.
The user first gets a certificate at the local membership service, which adds the local group names and
roles to the restrictions. The user presents this certificate to the virtual organisation’s membership
service, which accepts the information (the certificates of the local membership services are registered
as trusted), maps the group and role names to common names and signs the new certificate. All
members of the virtual organisation would accept the new one.

The central services might provide additional functionality over simple mapping functions by
maintaining a private database for additional users, groups or roles.
This service could also provide a place for user-managed groups.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 21 / 33

5.5. EXAMPLE
All services in this section are fictitious. Any resemblance to actual solutions, working or
planned, is purely coincidental.

A detailed example is given in this figure: three real organisations (INFN, CERN, CNRS) are working
together in two virtual organisations (LHC, EDG).
INFN uses LDAP to store the user information and Kerberos to authenticate their users. Their users
have long-term certificates, which are also published in the LDAP database. A user may get its
membership information by creating a short-term certificate (grid_proxy_init) and contacting the local
membership service. Since the long-term certificates are published in the LDAP database, the service
can associate it with the real user and look up the groups. The user would turn then to the LHC
membership service and obtain a certificate for this virtual organisation. This certificate can be used at
the resource broker to submit a job into INFN’s PBS or CERN’s LSF system.
CERN uses Kerberos to authenticate its users and the AFS protection server to assign groups to them.
CERN users have only short-time certificates, which they may obtain through the kx509 service. This
service also queries the protection server’s group database and places the result into the restricted
certificate. The user could use this certificate at two virtual organisation’s membership service to
obtain VO specific credentials. A user may obtain both VO specific credentials and use them at the
appropriate services. The user could use the local storage element with the LHC, EDG and even with
the CERN credential.
CNRS uses NIS+ to manage its users, so a user have to authenticate to the local membership service
using a password, even if she has a long-term certificate. To simplify this process they create a special
PAM module, which obtains this grid membership certificate at login. After logging into the system
the user has to log in to the virtual organisation by contacting its membership service. With the VO
credential the user could replicate a file from the CNRS storage element to CERN’s mass storage
system.

CA
it

CA
ch

CA
fr

VO
LHC

RM RB CAS
VO

EDG
RM RB CAS

SE CE CAS
ftp pbs ldap

INFN

SE CE CAS
rfio lsf Krb

CERN

SE CE CAS
ftp pbs NIS+

CNRS

membership
file

job

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 22 / 33

5.6. SATISFIED REQUIREMENTS
The satisfied requirements from D7.5

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 23 / 33

6. ACCESS CONTROL
In the last phase of the authorization the system has to gather the information associated to the
protected service or object, for example read and write permissions on a file, or stop and resume
permissions on a job.
In a closed environment these attributes are simply associated with the object (like file permissions),
but in the grid these are partially moved to the level of the virtual organization to be able to impose
higher-level decisions. For example a storage element cannot allow modifications to a local copy of a
replicated file, except through the replica manager, which is able to replicate these changes to every
copy.
The easiest solution would be to move the barrier up to the level of the virtual organization and treat
the system as a closed environment. This way the global decisions could be imposed by overriding the
security system with some special privilege (like root can read anything in a UNIX). The problem with
this approach is that virtual organizations might overlap at certain sites, thus we have to be able to
separate their global decisions, and not to allow overriding each others security control (“root” of one
VO cannot read a file from another VO).
The duality of these requirements affects the major groups of the services: job control (WP1, WP3 and
WP4), file management (WP2, WP5) and even to networking (WP7).

6.1. ACCESS CONTROL IN GENERAL
At a given object we would like to specify the set of users, who can make a certain operation. The size
of the set of users may vary from one or two fixed entries to an unlimited list. The operations are
usually chosen from a fixed set, since they have to be implemented in a service, although a
straightforward implementation leaves space for further extensions.
If the authentication process already assigned membership information to the user, then we don’t have
to worry about those details, so we can treat users, groups and roles as capabilities and put their
identifiers in the set of users.

In a UNIX like system files can have only three different “capabilities” assigned: one user, one group
and the others (which effectively means all the users, who can access the system). All of these entries
can have permission for only three operations: read, write and execute. These operations have different
semantics depending on the protected file (e.g. “read a directory” means listing its content). There are
three slots left for extensions, which are usually used for the set-user-id, set-group-id and temporary-
dir privileges. In some modern filesystems this simple access control can be extended by the more
general access control list (e.g. JFS, XFS, ext2/3, Solaris ufs).
There are other objects, which have the same access control mechanism applied: System V. IPC tools,
named pipes, named network sockets.
A process (job) has only one element in the set of users: the owner of the process, who can stop,
resume or kill it. Anyone can monitor the status of a process, who has access to the system. The owner
of the process also the security credential assigned to it: the process can act in the name of the user –
delegation of access rights without any restriction.
The networking side has a very simple access control: under 1024 only the root user can open up a
port, but above that limit anyone.
The root user, who can pass over every access control check, solves the concept of global operations.

various bits – should be cleaned up and reorganized by operating systems:

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 24 / 33

The concept of access control lists is also used in the filesystem of VMS (as an extension to the
standard permissions), in NTFS (uses only ACL) and in AFS (uses only ACL, but at directory level).
Some systems separate the authenticated and not authenticated users: VMS and NIS+ gives an extra
slot in the standard set of permissions (4 slots instead of 3); AFS puts them into two pseudo groups
(system:anyuser and system:authuser), which can be used in any ACL entry.
Some systems give security check override permissions for all or certain operations: in AFS the
members of system:administrators group can modify any ACL; in VMS and Windows NT a user or a
process may get a privilege to override a certain check (e.g. backup priv overrides the check for the
read permissions); in AIX it is called a role (e.g. backup role).
In Java one can assign detailed permissions to every port (listen, accept, open), which could allow
opening a port under 1024 even for an average user.

For the access control in the grid we would like combine flexibility with simplicity: we use only
access control lists (no standard set of permissions) with capabilities (user, group or role).
Global operations are granted by assigning special roles to users in the VO’s membership service and
adding this role to every protected object in a VO (in a storage element we can not allow read for
another VO’s backup role).
The set of allowed operations are depending on the corresponding service, but there must be at least
the administer, which enables a user with the appropriate capability to modify the ACL on the object.

6.2. HOW IT WORKS?
When a user is authenticated and got her credentials from a community membership service, a set of
capabilities will be placed in the restricted certificate. These capabilities describe the user’s original
identity, the user is a member of a given group or a user plays a given role in the organization.
Contacting a service the user’s certificate is validated and the capabilities are extracted for the
authorization system (→ list of capabilities)

The user requests a certain operation on a protected object. The service will fetch the access control
list (ACL) associated with the object (→ entries in an access control list) from a service specific

file

ACL
+cap.1:read
+cap.2:write,read
-cap.3:read
…
+cap.m:op1,op2

read
user
DN, VO
cap.1
cap.2
…
cap.n

decision

yes/no

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 25 / 33

location. In a storage element it can be an associated file or attribute on a file, but it can be also stored
in a separate database.
An entry in the ACL can be either allow (+) or deny (-) entry for a matching capability with the
associated list of operations.
To be able to define global ACL entries (such as “everybody can read this file”) the user’s capability
list is extended with two special elements: anyone and authenticated user. Their encoding can be:

/O=system/DN=anyone
/O=system/DN=authenticated

Open issue: If the order of the entries in the ACL is significant it can express more complicated cases,
although its representation might be difficult. If the ACL entries are stored in a relational database,
their ordered lookup is not guaranteed by default. The management of this order also complicates the
API, so we must show important use cases in support of this approach. – for now we assume the order
is not significant.
The capability “matching” can be defined as simple string comparison, since the “user, who is the
member of G group” is encoded in placing G group’s capability (either a special DN or a structure) in
the user’s capability list and in an ACL entry.
One capability of the user’s credential matches an ACL entry, if the user’s capability matches the
capability in the entry (i.e. equals) and the requested operation is in the list of the operations in the
entry. The request is granted if any of the user’s capabilities matches an allow entry and none of the
capabilities matches a deny entry. It could be expressed in the following formal algorithm:

granted = no
for every user-cap in list-of-user-capabilities

for every entry in access-control-list
if entry.capability = user-cap and

operation is-in entry.list-of-operations then
if entry.allow then

granted = yes
else

return no
end if

end if
end for

end for
return granted

Of course the decision making process could apply a more sophisticated algorithm with caching
intermediate results or reordering the search according to typical cases.
The decision making process could also use other information, such as the policy of the real or virtual
organization or the local site.

6.2.1. Access Control List
There are a few things, which can be defined without looking at the actual services.

An ACL must have a setacl operation, which is the permission to modify the ACL itself. When
someone (→ user) creates a new object with the associated ACL, then there should be at least the
following initial entry: +user:setacl
It might happen that the only administrative user deletes its own permission. Therefore it is desired
that a special role in every service (e.g. security-administrator) could override the check for this

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 26 / 33

permission for the locally managed objects. This functionality can be easily added by a service
specific policy (see 6.2.2).
An ACL must have a getacl operation too, which is permission to read/get the ACL itself. It is often
desired that only the administrators could read the access control list, but it could be relaxed that every
authenticated user or everyone may read it.

A protected object should have a delete or remove operation, which permits the removal of the object
itself, but not the objects it might contain.
In a standard filesystem it is often an operation on the enclosing directory, not on the file itself, but it
is necessary for the SE-RM semantics to be able to control this on file level.

If an object can contain other objects – it is a container – (e.g. files in a directory, processes under a
parent process), then it should have a new or create operation. It is the permission to create a new
object inside the current container.
A container must also have a list operation, which permits the listing of the contained elements. By
default everyone with new permission should have this permission as well.
If such an operation is allowed, then the object should have a special ACL list with the default entries.
This list should be applied on the new objects. If the new objects may aggregate other objects, then the
default ACL list should also be copied to the new object.
If there is no default ACL list, then the new object simply inherits (actually it is copied) the entries
from the enclosing object.
The creator of this new object should always have administrative right, regardless the default ACL.
TODO: have a look at the POSIX semantics

6.2.2. Policy
pattern+ACL, pattern to select the applicable service/object,

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 27 / 33

e.g.: ‘/path/**’:-:Joe:read Joe cannot read any file under /path (recursive)

6.2.3. GAA-API
GAA-API looks like a good candidate to hide the decision making process in the access control. It also
has hooks to download policy objects, which could be used later.
Beside the GAA-API there are other simple authorization interfaces, like the AZN-API. We might
consider using one of them in favor of the simplicity.
GAA-API is being implemented by the Globus team in connection with the development of CAS.
Depending on our usage of CAS service we might have to modify this code.
There is not known implementation of the GAA-API in Java.

6.2.4. VO-level Roles – Mutual Authorization
To impose global decisions on the level of the virtual organization, we have to assign permissions to
the corresponding services (e.g. resource broker, replica manager).
Since a service is made of plenty of individual servers at the sites of real organizations, it will have
plenty of certificates proving the identity of the individual servers. Managing all of these certificates in
the accessed objects would be cumbersome, so we should aggregate them under a single identification,
under a single role.
It means that a server process has to acquire its restricted certificate from the community membership
service, if it wants to operate with objects associated with the service.
As a side effect we have two benefits:

• The client may authorize (accept) a server based on its role – mutual authorization beside our
mutual authentication.

• If a server is compromised (or we are just precautious) its authentication certificate can be
easily replaced, because only the membership service has to be updated – it is the only service,
which checks the server’s key and then it assigns a role signed with its own key.

The sad side that we will have to modify the services to make this initial authorization and also make
sure that they are registered in the virtual organization’s membership service.

starting a new server:

1. generate a server cert-req and sign it with the site’s private key
2. configure the URI and certificate of the VO’s membership service and start the server
3. server connects to the membership service – checks its identity
4. membership service checks its identity by validating the site’s signature and challenging the

server’s certificate (site must be registered)
5. membership service assigns the appropriate role
6. server creates a new certificate with this role and sends this request
7. membership service signs the authz cert.
8. the server starts a new connection by presenting its new cert

6.3. FILE MANAGEMENT
For file access, the intention is to rely on the Replica Manager to perform authorization for grid files
and for the SE to perform authorization itself for “private” files.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 28 / 33

Every file in an SE have an ACL, but if it belongs to a VO, then there would be one entry for the RM
(full administrative permissions) and “read” entries for the earlier entries, which had at least “read”
permission.

Let’s see the process of registering a file in the replica manager:

1. Alice asks the current ACL of the file – getACL (+Alice:read,write,admin)
2. Alice asks the replica manager service if the file can be registered and gets its RM-role –

preRegister
3. If it will be registered, then Alice gives administrative permission to the RM-role in the

Storage Element – setACL (+Alice:read,write,admin; RM-role:admin)
4. Alice registers the file – register
5. The replica manager registers the file – register
6. The replica manager gets the current ACL from the Storage Element and stores it in the

Metadata Catalog – SE.getACL, MC.setACL (+Alice:read,write,admin; RM-role:admin)
7. The replica manager removes the modification permissions from the user in the Storage

Element – SE.setACL (+Alice:read; RM-role:admin)
It means the SE will still maintain authorization even for grid files. It is useful when the replica
manager is not accessible, because with these special ACL the read operation would work.

At the registration the ACLs are changed and the VO level access rights will be controlled by the
replica manager (stored in the metadata catalog). From this point the ACL can only be modified only
through the RM, which would provide this functionality in its interface.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 29 / 33

In an SE and RM the ACLs are in the metadata of a file: in the RM it is in the replica metadata
catalog, in an SE it is in a local database (in case of a mass storage system) or in the local filesystem
(e.g. /grid).
Replica Manager/Spitfire: it would simplify the authorization code, because they would not have to
deal with group/role management. They already base their authorization on certificates, so it would not
cause major modification in the design and the implementation.

6.3.1. Operations
TODO: get the list of operations from Jens

6.3.2. Compatibility with FTP
There is no support in FTP for ACL, so we will not be able to modify them through this protocol. But
this is not the only limitation of FTP. One cannot transfer file metadata, ask about the free disk space,
preallocate some disk space or do other storage specific operations, like locking or pinning. Since the
functionality of a storage element is much richer, than the functionality of an FTP server, it has to
implement its own interface, so it can also add support for ACLs as well.

The default behaviour of the ACL is the same as the current permissions in a filesystem: if one has a
permission to create a file in a directory

6.4. JOB CONTROL
Operations: start, stop, resume, kill, monitor, administer, credentials
When a user submits a job, she would assign stop, resume and kill permissions to the resource broker.
Credentials: management of credentials associated with a job. With a simple job only the user could
assign its proxy certificate to the job. For long running job these credentials have to be replaced before
their expiration time, thus the user may assign the permission to a trusted service to renew and replace
these certificates.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 30 / 33

Monitor: this permission would allow the monitoring of the status of this job. A user may monitor the
job directly or use the event collecting service to aggregate some details. In the later case the user
would assign monitoring permission to the job for the event service role the permission to get the
aggregated date from the monitoring service would be managed by that service.
It should be similar to the replica manager – storage element interaction.

6.5. NETWORKING
Operations: connect, accept, listen, transfer
The speciality of the network operations that the user has to get network permissions on both end of
the connection. The effective permission would be the intersection of the permissions on both ends.
These permissions could be checked before submitting a job, thus a resource broker could make
appropriate decisions. For example:

1. A-end: connect, 10Mbit (just outgoing connection – probably NAT); B-end: accept, connect,
100Mbit – the intersection means, that the resource broker has to initiate the connections from
A-end and these connections will not go faster than 10Mbit

2. CE-end: connect; submit-end: accept, connect – if an interactive job is submitted then the
connection has to be initiated from the job, back to the submit host.

One might add other metrics as well, like encryption possibility.

6.6. SATISFIED REQUIREMENTS
The satisfied requirements from D7.5

open issues:
Enforcement
mapping into the local system

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 31 / 33

7. LIFECYCLE OF OBJECTS

7.1. CERTIFICATE AUTHORITY

7.2. VIRTUAL ORGANISATION

7.3. GROUP AND ROLE

7.4. RESOURCE AND SERVICE
In a grid authentication process both parties are identified by certificates. In a typical use case a user
connect to a service and requests an operation. The user usually identifies itself by a (time limited)
proxy certificate, which is signed by the user’s real certificate, which was issued by the CA of the
user’s virtual organization (CA -> user-cert -> proxy-cert). The service currently identifies itself by the
certificate issued for the host. If there are several services running on the same host (probably in
different security domains, aka different pseudo users), they have to share this common key.

The common key doesn’t allow the identification of an individual service and it also has to be replaced
for all services, if one gets compromised. It would be a good idea to have separate certificates for each
service.

7.4.1. CA based solution
The CA of the virtual organization issues certificates for each service on each host.

Pro:
• it works with the current clients
• the cert/CRL handling is at the CA Contra:
• dynamic installation and stopping of services at hosts induces a lot of traffic at the CA

How: issue a certificate with service@hostname SN, e.g. gdmp@testbed.cern.ch

7.4.2. Host based solution
The host receives a certificate, which can be used as a mini-CA to sign certificates for the services.

Pro:
• a host may dynamically install or stop services without further administrative contact

with the CA
• host certificate is only accessed by root, thus it would be “more protected”

Contra:
• the clients probably have to be modified to check the full certificate chain

(similar to the problem of checking proxy certificates)

• the host acts as a CA for long term certs, thus it has to handle a CRL to
revoke compromised certificates

How: issue host certificates with the ability to issue service certificates. Using the X509 name
constraints this would then allow the maintainer of the host to issue service certificates for that host
only. The SN should be similar to the CA based solution, service@hostname.

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 32 / 33

For example a host SN=/O=Grid/O=CERN/OU=cern.ch/CN=testbed001.cern.ch and a GDMP service
the new SN=/O=Grid/O=CERN/OU=cern.ch/CN=gdmp@testbed001.cern.ch

The host certificate should have the following constraints:
BasicConstraints { (see RFC 2459/4.2.1.10)

cA=TRUE
pathLenConstraint=0

}
NameConstraints { (see RFC 2459/4.2.1.11)

permittedSubTrees {
{ base=<CN> } (e.g. base=testbed001.cern.ch)

}
}

Open issues:
• lifetime of the service certificate (default: same as host cert)
• CRL for the service certificate issued by the host (distributed by each host or centrally

by an organization?)

more information on certificates in RFC 2549 <ftp://ftp.isi.edu/in-notes/rfc2459.txt>

7.5. USER

7.6. PERMANENT OBJECTS

Doc. Identifier:
DataGrid-07-D7.6-0112-0-1

SECURITY DESIGN

Date: 15/05/2002

IST-2000-25182 WORKING DRAFT 33 / 33

8. ANNEXES

8.1. ENTITY, GROUP AND ROLE REPRESENTATION
We might give unique names to roles and groups by prefixing the DN of the VO’s CAS service. This
way a WP2 group and an RM role would be:

/O=Grid/OU=DataGrid-VO/CN=cas/Group=WP2

/O=Grid/OU=DataGrid-VO/CN=cas/Role=RM

It would simplify the generation of a CAS certificate and the syntax of an ACL entry as well. The
CAS credential would merely contain a sequence of DNs:

/O=Grid/OU=CERN/CN=XYZ # user’s DN
/O=Grid/OU=DataGrid-VO/CN=cas # VO membership
/O=Grid/OU=DataGrid-VO/CN=cas/Group=WP2 # group membership
/O=Grid/OU=DataGrid-VO/CN=cas/Role=RM # role

If someone contacts this service with a CAS credential containing such a sequence, this list can be
appended to the original one, giving the possibility to express multiple VO memberships in a single
credential.

And the ACL would be pairs of DN and operation:
<entry> <level>read</level> <dn>/O=Grid/OU=CERN/CN=XYZ</dn> </entry>
<entry> <level>read</level> <dn>/O=Grid/OU=DataGrid-
VO/CN=cas/Group=WP2</dn> </entry>

(It was previously:
<person> <level>read</level> <dn>/O=Grid/OU=CERN/CN=XYZ</dn> </person>
<cas> <level>read</level> <dn>/O=Grid/OU=DataGrid-VO/CN=cas</dn>
<group>WP2</group> </cas>
)

It would also give us smooth transition using gridmap files: a group or role

DN could be mapped in a specific userid.

8.2. ACCESS CONTROL LIST

8.2.1. XML Representation

8.2.2. ACL API

	1. INTRODUCTION	3
	OBJECTIVES OF THIS DOCUMENT
	APPLICATION AREA
	APPLICABLE DOCUMENTS AND REFERENCE DOCUMENTS
	DOCUMENT AMENDMENT PROCEDURE
	TERMINOLOGY

	EXECUTIVE SUMMARY
	OVERVIEW
	AUTHENTICATION
	OVERVIEW OF GRID SECURITY INFRASTRUCTURE
	MUTUAL AUTHENTICATION
	SHORT-TIME CERTIFICATES
	GSI Proxy Certificate
	Online Credential Repository (OCR)
	Direct Generation

	DELEGATION
	CERTIFICATION AUTHORITIES
	CERTIFICATE REVOCATION LIST
	SATISFIED REQUIREMENTS

	COMMUNITY MEMBERSHIP MANAGEMENT
	MEMBERSHIP INFORMATION IN GENERAL
	HOW IT WORKS?
	CAS
	COMPOSITIONAL COMMUNITIES
	Organisational Membership Service
	Mapping

	EXAMPLE
	SATISFIED REQUIREMENTS

	ACCESS CONTROL
	ACCESS CONTROL IN GENERAL
	HOW IT WORKS?
	Access Control List
	Policy
	GAA-API
	VO-level Roles – Mutual Authorization

	FILE MANAGEMENT
	Operations
	Compatibility with FTP

	JOB CONTROL
	NETWORKING
	SATISFIED REQUIREMENTS

	LIFECYCLE OF OBJECTS
	CERTIFICATE AUTHORITY
	VIRTUAL ORGANISATION
	GROUP AND ROLE
	RESOURCE AND SERVICE
	CA based solution
	Host based solution

	USER
	PERMANENT OBJECTS

	ANNEXES
	ENTITY, GROUP AND ROLE REPRESENTATION
	ACCESS CONTROL LIST
	XML Representation
	ACL API

