Some Notes on Logical File Names
and Related Interfaces

David Malon
ATLAS Database Group

LHC Persistence Workshop
5 June 2002

Disclaimers

m Qutside the context of the common project, we
iIn ATLAS had been talking about how to wrap
testbed-dependent LFN/PFN mapping services
behind a common Athena service interface

m | mentioned this to Dirk—mistake!!—now I'm
giving a talk
m Consider this “thinking aloud”...

Grid replica services

The nascent state of grid replica services has led to a
somewhat schizophrenic state

— On the one hand, services have been predicated on the
assumption that LFNs are unique with a virtual organization

— On the other hand, ensuring uniqueness has been left (without
tools) to all the world’s VOs
These services are supposed to be the basis for a global
file system, but

— On the one hand, some services or use models require (at least
implicitly) that LFNs be immutable;

— On the other hand, you would never accept a file system in
which you had to name everything perfectly the first time—no
renaming, no moving to another directory, ...

Good news, though—things are improving

— See EDG talk

Common project discussions

m Some discussion in Architects Forum about
how/whether to write LFNs inside files created
by storage manager/streaming layer
— Pros/cons of aliases, ...

— Vincenzo said it is a requirement that users be
allowed to change LFNs

— I will try to avoid rehashing these discussions

m Do we really need to agree on an approach to
LFN determination at file creation time? 1
wonder....

When to assign names

(At least) three natural(?) times to consider assignment of
logical filenames:

m Job submission time

— We are accustomed to managing (non-grid) productions, with
naming conventions and run number assignment and random
number seeding all orchestrated to meet uniqueness
constraints—why should LFN management be different?

m File creation time

— This is when local file systems succeed or fail at name
assignment

m File registration time

A confession

I have qualms about both
“Trust me! I am always careful with job configuration.
I know this is a safe name choice.”
and

"I cannot return from my create() method until our
Uniqueness Assurance Center confirms that this name
is okay.”

Assumptions

m Jobs using our persistence infrastructure will run “on the
grid” and off, interactively or in batch, under control of a
job submission service or not.

m Persistence infrastructure will support production and
personal use.

= Output may or may not be published to collaboration
catalogs and/or to the grid.

I tend to think of this as (at least) a two-stage operation—
produce the data, then publish it—more correctly, decide
whether to publish it, and under what name(s).

It seems architecturally natural to me to defer final
selection of LFNs until the publication stage if we can.

Of course, in production jobs, a single script that runs the job, then
publishes output, may in fact have been preconfigured with
output LFN choices.

One possible approach

m When file is created, a permanent “globally” unique id is
assigned, and written into the file—call this the GUID
— Many schemes have been proposed (UUID-based, ...)—pick one
— May not care whether “global” is truly global, or within a VO, or

— No LFN intended for human interpretation is assigned at this
point

m Storage manager writes a {GUID, localName} record
into a local file

— Human-browsable, even editable

One approach...

At end of job, this helper file contains a list of {GUID,
localName} entries—one for each file created

Ref implementations should rely on GUID, not on logical
file name

If user runs purely locally—no relational layer, no grid—
helper file suffices to support interfile navigation

If/when job output is published—to the grid, cataloged
iIn common project relational layer, ...--a logical file name
IS assigned, and also associated with the GUID

— In some schemes, the GUID may be an alternative LFN or alias

— Emerging Replica Location Services support replica metadata—
GUID could, alternatively, be metadata associated with the LFN

Extraction for standalone processing

m When a user wishes to copy an event collection
or dataset or ... for off-net processing, e.g., on
her laptop, the (automated) process is
something like

— Translate dataset request into list of LFNs and
corresponding list of GUIDs

— Find nearby replica, copy it to laptop with some
localName

— Write one more file: the {GUID, localName} list

m User can now run disconnected, and navigation
works

Interfaces

m Should be easy, right?
— getLocalName(in string LFN, out string localName)
or
— getLocalName(in GUID fileid, out string localName)

m What do you do if the LFN is invalid, if no such LFN is
registered, if replicas exist but are not local, ...?

m Architects Forum needs to decide how to handle errors
and nonstandard situations (Return codes? Status
codes? Exceptions?)

— Should be addressed generally—not unique to this component,
or even to the persistence project

Implementation proposals

Define a simple common service interface like
getLocalName

Deliver one common project local implementation (non-
grid)
- E.qg., if we use the {GUID, localName} file approach, a common
implementation would be based on this
Deliver one common project grid-aware solution
— Proposal: EDG implementation—find the file instance chosen by
the Resource Broker, if any, by consulting BrokerInfo interface
Allow/expect experiment-specific implementations of the
common interface, e.q.,

— Rule-based translation of LFNs to local names (e.g., prefix/suffix
rules)

— Experiment-specific catalog consultation

Proposed implementation choices

m ‘localName” has a pragmatic meaning—a string one can
pass, e.g., to a POSIX open() call, and expect things to
work (no special prefixes, no protocols, no host
identification, ...)

m What if a replica exists, but it is not local? Do we initiate
a transfer?

— This may happen with on-demand traversal of interobject
references

— Propose that “fetch” be a configurable runtime choice
= What if the file could be read remotely via an
appropriate protocol, rather than transferred?

— Propose that we not worry about this in early releases

