ROOTifying COBRA

Bill Tanenbaum
US-CMS/Fermilab
06/06/2002



Presentation Outline

* Previous Prototype (March 2002)
* Current Prototype Overview

Current Prototype Details
ROOTification Issues
Future Plans

 Summary

06/06/2002 Bill Tanenbaum US-CMS/Fermilab



March 2002 Prototype

Quick ROOT Prototype mmside COBRA
« Expedience over quality

* Don’t disturb Objectivity

* Create ROOT classes for “writeHits”

ROOT classes populated from existing
Objectivity classes

e It works!

06/06/2002 Bill Tanenbaum US-CMS/Fermilab



Current Prototype - Overview

* Replace Objectivity with ROOT 1n
COBRA/ORCA

 All persistency capable classes ROOTified
(including metadata)

« Use STL classes (e.g. vector).

 No ROOT specific classes used, except for
Persistent References (TRef class)

06/06/2002 Bill Tanenbaum US-CMS/Fermilab



Current Prototype Details

* No Redesign of COBRA

 Map Objy functionality to ROOT
— Obyy Database -> ROOT file

— Objy Container -> ROOT directory (not
Tree/Branch) (Folders not used, either)

— Objy Ref/Handle -> “enhanced” TRef

— Objy ooVArray -> STL <vector> (not ROOT
specific array)

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 5



Prototype Details cont.

 Map Objy functionality to ROOT (cont.)

— Objy name scopes -> existing COBRA
implememtation of multimap using <vector>
(DictOfRet)

— Obyy transaction -> NONE
— Objy session -> NONE
— Objy context -> NONE

06/06/2002 Bill Tanenbaum US-CMS/Fermilab



Scale of Effort

* One programmer not that familiar with COBRA

* Removing Objectivity references and getting
COBRA/ORCA to build successfully (3.5 weeks)

* Replacing stubbed Objectivity with “equivalent”
ROOT functionality in COBRA base (3 weeks)

* Rootifying all persistency capable classes, with
successful COBRA/ORCA build (2 weeks)

* Debugging (1 week so far - ongoing)

06/06/2002 Bill Tanenbaum US-CMS/Fermilab



Current Prototype Status

ROOT 3.03/05 COBRA 6 0 3/ORCA 6 0 1

Metadata likely to be in Relational Layer also
ROOTified for now (easier that way)

* Prototype in debugging stage

* Not supported yet (due to expediency)
— Remote files
— External histogramming packages (e.g. HTL)

Still debugging, no performance/recovery info yet

06/06/2002 Bill Tanenbaum US-CMS/Fermilab



Major ROOT Issue

 TRef uniquely identifies, but does not
locate, a persistent object on disk.

— defined a larger class containing additional
information (1.e. file name, directory name,
object name) to (poorly) handle this problem. It
“works” as long as nothing 1s moved, renamed,
split, etc...

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 9



Other ROOT Issues

« ROOT does not provide unique OID

— OID’s used by TRef belong to TRef, not to
object. If two TRef’s refer to same object, they
may or may not have the same OID. This
complicates, for example, checking if two
TRef’s refer to same object.

— Objects not referenced by TRef have no OID at
all. (May be OK.)

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 10



Other ROOT Issues (cont.)

« Can’t write all modified persistent objects with
single call (i.e., no “commit”)

— User must do bookkeeping to know what
objects or directories to write, and write them
individually.

— OTOH, the ability to selectively write objects
provides flexibility.

— Opinion: I prefer a commit, even in the absence
of ACD transactions.

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 11



ROOTCINT

* rootcint must generate a data dictionary for any
persistence capable user-defined class

 If rootcint must generate a DD for class C, it must
generate a DD for any user-defined class that 1s:
— A base class of C

— The class of a persistent non-static data member of C

« If B<C> 1s an instantiated persistence capable
class, and C 1s a user defined class, a DD must be
generated for class C.

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 12



ROOTCINT (Cont.)

* Because of the above, many classes may
need to be rootified, especially 1f deeply
nested templates are used (as n COBRA)

* Opinion: If a templated smart pointer 1s
used, keep a non-templated persistent
version available (unless data dictionary
bloat 1s somehow solved/reduced by other
means).

06/06/2002 Bill Tanenbaum US-CMS/Fermilab

13



ROOTCINT Issues

* Not all legal C++ works.

— What doesn’t work 1s not well documented.

— Much of what doesn’t work 1s not caught by rootcint.
Rather, the produced dictionary does not compile.

— rootcint’s error messages lack detail.
— Fixes nearly always possible, but not always obvious.

— Conclusion: rootcint needs work if the generation of
data dictionaries 1s to be fully automated.

— Worst deficiency: Too limited support of STL.

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 14



Near Future Plans

 Communicate ROOTCINT wish list to
ROOT team (partially done)

* Finish debugging prototype
 Put prototype under source control (CVS)

» Use prototype for tests (Performance,
reliability/recovery, scalability, etc.)

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 15



Possible Future Plan

* Persistency implementation dependencies
removed from COBRA and placed in separate
products.

 Implementation independent representations
used for:
— Persistency capable classes

— Persistent references
— Containers/Collections, etc.

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 16



Summary

« COBRA/ORCA using ROOT 1s running (but still
in debugging stage)

* TRef needs improvement to locate and read object
into memory

 ROOTCINT could use improvement to minimize
manual user intervention

 Still lots to do to make framework independent of
persistency implementation

06/06/2002 Bill Tanenbaum US-CMS/Fermilab 17



