LCG Persistency Project

requirements and priorities
component breakdown

refs and navigation

Dirk Dullmann, IT-DB

dirk.duellmann@cern.ch

LCG Persistency Workshop, June 5t" 2002

Persistency Project —
How to get started?

m Persistency RTAG has delivered its final report to SC2
— Describing an agreed top level component model
— Agreement has been achieved in some areas by leaving
controversial issues open
m The Persistency project is a development project
— Close release dates — will initially provide restricted functionality
— Limited scope — won't not solve all data management problems
— Qutput is real s/w - pass acceptance tests by compiler and end
users
m Need an even more pragmatic approach than RTAG
— Little time for philosophical arguments

— But need to make sure that any initial simplifications
= Are accepted by LCG Architect's Forum
= Come with a clear plan when the real solution can be achieved

Scope of the Project

m Limit the initial project scope to the core persistency problem
— Inline with RTAG project proposal

— Other important data management components are outside of the
persistency project

= We should at least know which outside components later to integrate with
= Some Examples

— Application Cache Management
— ConditionsDB

— Production Bookkeeping
— Grid Replica Management

m Later RTAGs may change that
— but this project can't realistically address all problems at once

Goals of this workshop

Agree on a component breakdown
— Refinement of the RTAG component model

Agree on the basic principle of their interaction
— Draft interfaces define the main protocols involved
— Expect significant changes as we go along

Agree on the priority of their implementation
— Based on input from the experiments...

— ... and estimated effort from implementation studies

Establish work packages and release dates

— Refining the draft interfaces
— Starting work on their implementation

How to collaborate effectively?

= Non-trivial development project
— All development will be open and will follow development process
agreed for LCG applications area
— Visible in many client areas - many people will
= find problems with their particular application area
= have concrete ideas about their favourite solution/implementation them
— Effective communication is and will be a problem

m Proposal: Prefer new solutions above new requirements/problems
— Use the experiment internal communication channels for maintaining a
prioritised requirement lists — one(!) per experiment

= If no agreement can be achieved within an experiment about a new
requirement — this project probably can help either!

— If you have a concrete solution for an accepted requirement — just
contact me (and your experiment maybe...)

Proposed Project Name - PooL

Why ?
m Pool of persistent objects for LHC
— Open projects have recursive acronyms

— You can navigate in it
= See later presentations for large volumes examples

— It's a container for a large volume of matter which is
somehow hard to move

— And if you don't like water anyway...
= there is still an indoor game with colliding particles

m Please note: PoolL is pronounced without “h” after the “P”

Experiment Deployment Models

Summary of first round of discussions with the experiments
Timescale for first release — September (CMS)
— Others are interested but more relaxed about date

A few numbers referring to minimal requirements for a first release
(rather than to constraints imposed by the design/implementation)

Volume - 10-50TB (CMS)

Files - several 100k (ALICE)
Distribution - 0O(10) sites (CMS)
Recovery from jobs failures - (CMS, ATLAS)

— CMS: Objy based setup allows to just re-issue same job
= Append to existing files
= Would like to see at least the same functionality

— Less extend
= LHCb (each file is written by exactly one job)
= Alice (event spans several files)

Number of population jobs - 10k (CMS)

Use of REFs per Event (CMS/ATLAS/LHCDb)
— ALICE no plans
— LHCb: O(100) refs per event; CMS (100-1000);

Experiment Focus of Interest
(prioritised by # of votes)

Rootl/O - Catalog integration (ALL)

— Transparent Navigation (ATLAS/CMS/LHCb)
= ALICE(maybe, but only in some places)

— EDG (ALL), Alien (ALICE), Magda (ATLAS),

Consistency between streaming data and meta-data (CMS/ATLAS)
— At least at application defined checkpoints during a job

Early separation of persistent and transient dictionary (ATLAS/LHCb)
— see eg Pere’s and Stefan’s presentation

Support for shallow (catalog-only) data copies (CMS)
— formerly known as cloned Federations

Support for deep (extracted part-of-object hierarchy) copies (CMS)
— Both still needs more discussion to define concrete requirements

RDBMS choice for initial Prototyping

= Some comments about my understanding

— MySQL has been chosen on as implementation technology for the first
project prototypes by the LCG Architect’'s Forum

— Several people (including myself) have expressed their concern about
using MySQL to build very large scale, reliable production environments

— Still for the September timescale we a pragmatic choice to start with
m The question about the most suitable RDBMS back end will stay
open until we real have production experience

— Production requirements (scalability, concurrency, reliability) are not yet
equal priority to all experiments
— We can not assume only one technology
= at one point in time
= over the duration of the project

m We need to insulate against changes in the RDBMS as much as
against changes in the streaming technology

RDBMS interface

m Need RDBMS C++ binding - from a quick web survey
— MySQL C++

= Used for initial prototyping

= free, but limited compiler support, bound to MySQL
— Proposal: either replace asap, or accept for september release

= SQLAPI++
= Shareware - but essentially free

= comes with full source code
= multi platform(Win/Linux/Solaris), multi backend (10 db vendors)

m Root RDBMS interface
= Two flavours: one based on ODBC/JDBC
= More limited functionality, somewhat coupled to framework
= Free, multi platform, multi backend (even though fewer DBs)

generic file open / close / flush, stat

LFNtoPFN

o |PlacementConfig o IFileHandling |ITTT T -i
_____ — o o e o —— ICollectionAdmin
—T T pmmmmmmmmmemm—s ICatalogAdmin LcGCollectiod
=== ICollectionRetrieval
LCGRef IRefResolution
PR S | PersistenCyMQri= == e Reefte = T
RefToLFN I
I | | CollectionDescriptionSr
[| | |
[| I I |
| | I IReplicaResolution |
—— e = — _! : \%/IFileHandler R ? ICollectionimpl
|
|
|

StorageMgr CollectionlmplementationSv

IReadWrite

}f IPlaceObject

PlacementSvc

eg EDG RLS, Alien, Magda

IPersistentDict

—_————

IConvert

StreamerSve m= e= — -Rdbeﬁenq

DictionarySrv

LCGClassMetaModel

e ————— e e, e e —————— —

———————— ICacheMgr —_—_———

CacheMgr

InteractiveBrowsing FrameworkScripting

A few preliminary
implementation choices...

ANSI C++

— incl. STD libs

Develop on RH 7.2, gcc 2.95.2

— test frequently on gcc 3.1

Use C++ namespace

— but maybe foresee to disable use of namespace via #define
Use exceptions

— Only consistent way to reliably trap problems eg during
navigation
One shared library per component

— Provides well know factory method for component
implementation

— Sufficient to get started — but need still to agree on a real
physical component model (larger scope than just persistency)

Ref Interface and Implementation

m Assume smart-pointer based approach

m A few proposals

— Refs are implemented as concrete class templates

= Using a technology specific strategy rather than implementing an abstract
interface

— Start from an existing interface/implementation
= Gaudi and Espresso Refs

— Could use Refs not only for persistent user objects but also persistent
framework objects

= eg Files (via the File Catalog), Event Collections (via the Collection registry)

= This would reduce the number of required interfaces in the system and
simplify component reused

m May need subscriber-like interface to experiment specific cache
managers

— Register all refs which are created in a cache
— Invalidate all refs once a cache is purged (eg end of event)

Transparent Navigation
& Root I/O TRef

m Current Root I/O implementation of TRef does
— not open files

— not provide information to uniquely identify which file needs to be
opened

— not bring any objects into memory
— not provide information on how to find the destination object

m The TRef functionality is currently not sufficient to implement a
StorageManager in the RTAG sense

— “write object” is supposed to produce a “token” which can be used (eg
in a different process) to directly read the same object again

— read could be triggered from Root (eg using the EXEC comment in class
definition)

Transparent Navigation
for Root I/O

m Several possibilities to extend the basic Root I/0O services exist
— LCG Persistency Framework maintains complete information about files and
object location in its own Ref — see Markus Frank’s talk
= keeps track of file, tree and branch info
= may need hooks into RootI/O to gather required information as data gets written
— LCG Persistency Framework uses another mechanism to uniquely identify objects
in Root files
= eg store objects under a unique key
= less Root I/O specific...
= ...but also giving up some of Root features (tree access?)
— Root TLongRef / TGridFile
= See Rene’s talks tomorrow

m Navigation is an essential part of the RTAG model
— we need to converge on a possible implementation soon!

Checkpointing/Transactions

Model for how to integrate several independent technologies to
achieve application defined points of consistency (checkpoints)

Proposal:
Components which modify persistent state need to implement the
ITransactionHandler/ITransactionContext interface

— ITransactionContext *ctx = comp->createContext(“context name”);
— comp->destroyContext(ctx);

ITransactionContext interface provides:
— bool start() // activate context
— bool prepare() // check if commit would be possible so far
— void commit() // commit current state to disk now
— void abort() // (optional) undo all changes since last start

Not full ACID transactions — but at least ACD is required

How to attach “Meta Data”?

m Proposal: go for a minimal (but consistent) approach
— allow to attach extensible list of named attributes
— Scope/Container provides IAttributeList interface
= eg files (scope: file catalog)
= eg event collections (scope: collection registry)
= eg individual events (scope: event collection)
— queriable eg by SQL or higher level interface

m JAttributeList

— Creation and deletion of attributes
= scope->defineAttribute(“name”, type); // allow C++ basic types + string
= Scope->removeAttribute(“*name”);
— Defining and retrieving individual values
= setAttribute(ref, “name”, value);
= getAttribute(ref, “name”, &value);
— Query
= itr = scope->makelterator(“a query string”); // or query predicate object?

Summary

Deployment model and focus of different experiments are different
— Simplifies split of tasks ©
— Complicates agreement on priorities ®

— Some danger of ending up with a shopping bag of disjoint features
rather than a common project

Still in @ phase of discovering more problems/requirements than
solutions
— we'll need to freeze (not the code but) the requirement list soon/now
— transparent object navigation for Root I/O needs a real solution asap
= otherwise we may have to delay the September release
Prototyping work is starting
— First order component breakdown underway
— First tests of catalog prototypes look promising

