Comparison of e.m. showers in g3 and g4 in CMS

Kati Lassila-Perini CMS — Helsinki Institute of Physics

- Motivation:
 - to validate the change from g3 (CMSIM) to g4 (OSCAR) for the CMS ECAL and electron/photon reconstruction.
- Program of work:
 - Compare unconverted 30 GeV photons incident (with a constant angle and position) to a crystal of the CMS $PbWO_4$ calorimeter simulated by CMSIM and OSCAR.
 - Record: total E deposit, E in maximum crystal, E in 3×3 and 5×5 crystals around the maximum
 - \Rightarrow E resolution, lateral shower shape.
 - Study the dependence on production and tracking cuts and choose an operating point for the large CMS simulation production.

Simulation setup

- OSCAR_2_2_0_pre2b and CMSIM127
- The physics cuts in OSCAR:
 - Cuts in OSCAR set in energy to ease the comparison with CMSIM.
 - Production cuts: infinite for e+/e- (no delta-rays) varied for photons (Bremsstrahlung)
 - Tracking cuts: varied.

Production cuts:

$50 \mathrm{keV}$	$100 \mathrm{keV}$	$150 \mathrm{keV}$	$200 \mathrm{keV}$	$400 \mathrm{MeV}$	$500 \mathrm{keV}$	2 MeV
INF	INF	INF	INF	INF	INF	INF
Tracking cuts:						
$50 \mathrm{keV}$	$100 \mathrm{keV}$	$150 \mathrm{keV}$	$200 \mathrm{keV}$	$400 \mathrm{MeV}$	$500 \mathrm{keV}$	2 MeV
$500 \mathrm{keV}$	1 MeV	$1.5 \mathrm{MeV}$	$2 \mathrm{MeV}$	$1.8 \mathrm{MeV}$	$2 \mathrm{MeV}$	5 MeV
	50keV INF acking cu 50keV 500keV	50keV100keVINFINFacking cuts:50keV100keV500keV1MeV	50keV100keV150keVINFINFINFacking cuts:50keV100keV500keV1MeV1.5MeV	50keV100keV150keV200keVINFINFINFINFacking cuts:50keV100keV150keV200keV500keV1MeV1.5MeV2MeV	50keV100keV150keV200keV400 MeVINFINFINFINFINFacking cuts:50keV100keV150keV200keV400 MeV500keV1MeV1.5MeV2MeV1.8MeV	50keV100keV150keV200keV400 MeV500keVINFINFINFINFINFINFacking cuts:50keV100keV150keV200keV400 MeV500keV500keV1MeV1.5MeV2MeV1.8MeV2MeV

- No magnetic field.
- No instrumental effects (noise and such) added.

The errors in the fit are larger than the visible fluctuations.

The initial, small decrease of the energy in 1×1 (3×3) when tracking cuts not used is somewhat unexpected, although minor effect

(as if energy deposit from continuous loss took place only at the end of the track).

Ratios $1 \times 1/3 \times 3$ and $1 \times 1/5 \times 5$

OSCAR showers narrower than those in CMSIM.

Conclusions

- We are quite confident in the simulation of electromagnetic showers in g4.
- We are working on the detailed comparison between the test beam data and **OSCAR**.
 - The first indications are in good agreement.
 - The previous detailed comparisons with g3 showed good agreement, although with a suggestion that the central core of the showers seemed slightly too wide in g3.
- The issue of time consumption has been thoroughly studied and we are converging towards a conclusion which looks acceptable. We are working on the final numbers.
 - Pure shower simulation in the simplest possible geometry (a PbW0₄ box) stand-alone in g3 and g4:
 - - $\begin{array}{ll} {\rm g3:} \ 0.36 \ {\rm s/evt} \\ {\rm g4:} \ 1.0 \ {\rm s/evt} \end{array} \ \Rightarrow {\rm g4/g3} = 2.8 \end{array}$
 - (only a fraction of the total time in the full system, e.g. 20% in CMSIM).
 - The simple $PbW0_4$ block has been implemented to the full system to study the timing of its various components in absence of a complex geometry.