Cluster Evolution

Collapse of rare high density peaks of primordial density distribution produces clusters

- probe high-density tail of the cosmic density field
- number density is highly sensitive to cosmological model, e.g. growth rate of density fluctuations depends on

Growth rate of density fluctuations

number of clusters at a certain mass (normalised to the present number) Number density of clusters of given mass versus mass = mass function

but: mass is difficult to measure for large samples and for distant clusters

- temperature function
- --- X-ray luminosity function

Luminosity function

Luminosity functions of distant clusters

Careful!

- > selection effects
- source confusion

RBS380

Fainter than expected, most of the emission comes from an AGN

→ (source confusion!)

High resolution X-ray images are important for cosmological applications

Gil-Merino & Schindler, in press

Result from luminosity/temperature functions

$$\Omega_m \approx 0.3 \pm 0.1$$

Distance determination with the Sunyeav – Zel'dovich effect

Photons of the CMBR are scattered at the hot ICM

spectrum is shifted to slightly higher energies

depending on energy a decrement or an increment of the intensity is observed

Distance determination with the Sunyaev – Zel'dovich effect

- SZ De- or Increment ~ density
- X-ray emission ~ density²
- → physical size angular size
- → direct distance determination
- → Hubble constant

RXJ1347

➤ Contours: X-ray

➤ Colours: SZ

Komatsu et al. 2001

Problem: deviation from spherical symmetry

physical size

→ along line of sight angular size

perpendicular to l.o.s.

Many clusters have to be observed

Carlstrom et al. 2001:

 $H_0 = 60 \pm 10 \text{ km/s/Mpc}$

Interaction of Galaxies with ICM ...

... has effects on galaxies and on the ICM

... has effects on several ICM quantities

- energy
- entropy
- metallicity

•

Interaction of Galaxies with ICM

Best tracer is metallicity:

- Distribution, not only radial gradients!!!
- Evolution (out to z=1)
- Element ratios

XMM spectrum of A3558

CL0939+4713 (XMM, HST)

De Filippis, Schindler, Castillo-Morales 2003

Perseus cluster

Schmidt et al. astro-ph/0207290

Interaction of Galaxies with ICM

Best tracer is metallicity:

- Distribution, not only radial gradients!!!
- Evolution (out to z=1)
- Element ratios

Enrichment processes

- Ram-pressure stripping (Gunn & Gott 72)
- Galactic winds (De Young '78)
- Galaxy galaxy interaction
- Jets from AGNs

Ram-pressure stripping

Galaxy is moving through the ICM

grey scale: density

Toniazzo & Schindler 2001

contours: pressure

Enrichment processes

- Ram-pressure stripping (Gunn & Gott 72)
- Galactic winds (De Young '78)
- Galaxy galaxy interaction
- Jets from AGNs

Galactic Winds

M 82 (NGC 3034)

FOCAS (B, V, H α)

Subaru Telescope, National Astronomical Observatory of Japan

March 24, 2000

Copyright@ 2000 National Astronomical Observatory of Japan, all rights reserved

Enrichment processes

- Ram-pressure stripping (Gunn & Gott '72)
- Galactic winds (De Young '78)
- Galaxy galaxy interaction
- Jets from AGNs

Galaxy – galaxy interaction

Enrichment processes

- Ram-pressure stripping (Gunn & Gott '72)
- Galactic winds (De Young '78)
- Galaxy galaxy interaction
- Jets from AGNs

RBS797 (z = 0.35, $T = 7.7^{+1.2}_{-1.0} \text{ keV}$) CHANDRA (0.5 – 7 keV)

Schindler et al. 2001

total cluster emission

central part of the cluster

pressure of relativistic particles pushes away the ICM

so far: controversial results on the efficiency of the processes

Comprehensive models

- > Hydrodynamic simulations
- ➤ N-body simulations
- >+ Inclusion of all enrichment processes

Innsbruck, Edinburgh, Potsdam (test runs)

Metallicity Distribution

Metallicity Distribution (zoom)

Summary of Interaction Processes

Interaction of ISM/ICM not very clear yet

- Many possible processes
- Enrichment efficiency of the processes and time variation not clear yet
- Controversial results of simulations

We are just at the beginning !!!

Magnetic fields in clusters

• Radio emission has been found in many galaxies clusters

Diffuse emission (Radio haloes, relics)

Èmission associated with galaxies

How can we measure magnetic fields?

Radio galaxies produce polarised radiation

Plane of polarisation is rotated during passage through magnetised plasma (= birefringent medium)

$$\Phi = RM \lambda^2$$

angle rotation wavelength measure

$$RM \propto \int \rho_e B_{II} dl$$
rotation electron magnetic path measure density field length

Rotation Measure

Eilek & Owen 2002

A2634

- Observations of the RM of sources in or behind a cluster determine
- strength of the magnetic field (few μG)
- distribution of the magnetic field

Magnetic field is not constant

Flux at cluster [erg/sec/cm²]

X-ray Flux

Flux at cluster [erg/sea/cm*]

Rotation Measure ~ X-ray flux Magnetic field ~ gas density^{0.9}

Clusters with different temperature

Next step: determination of dependence on temperature

Radio haloes and relics

Why do not all clusters have radio haloes/relics?

- Only 16 clusters with radios haloes of 1Mpc
- Of the most luminous clusters on ~30% have radio haloes
- Combination of large size and short lifetimes
- Correlation between radio halo power and X-ray luminosity
- Only clusters with merger features have radio haloes

Radio haloes and relics

----- Conclusion:

- radio haloes/relics are linked to major mergers
- particles are (re-)accelerated to relativistic energies in shock waves emerging from mergers

Cooling Flows?

Standard model:

- gas cools preferably in the centre because X-ray emission ~ density²
- decrease of pressure in the centre
- gas flows into the centre from outer regions
- even higher density in the centre
- even more X-ray emission in the centre cooling catastrophe

Cooling Flows?

Gas of different temperature should be present (multiphase)

but: high resolution spectroscopy with XMM showed no signs of gas with temperatures below 1 keV

Summary

Insight into physical processes (cooling, heating, interaction, magnetic field, particle acceleration,...)

Clusters of galaxies are very versatile and powerful diagnostic tools for cosmology

Summary

Combination of -

- different methods
- different wavelength
- new generation of telescopes (XMM, CHANDRA, VLT...)
- numerical simulations
 - → High-precision cosmology