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Applications of nonequilibrium field theory

1. Dynamics of early universe fields

– Reheating dynamics (mainly classical, Hartree)

– Formation of topological structures (classical)

– Development of the radiation dominated universe

2. Heavy ion collisions
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tfreeze−out ≈ 5fm

– Thermalization time scale
– Rethermalization after critical behaviour

3. Statistical field theory

– Equilibration of a many-body system

– Emergence of the Bose-Einsten and Fermi-Dirac statistics

– Renormalization . . .
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What is thermalization?

Thermal equilibrium:
ρ̂ = e−βĤ/Tre−βĤ

〈
X̂

〉
= TrX̂ρ̂

Is thermalization possible in closed nonlinear system?

• Ch. Wetterich: Equilibrium is a fixed point of the evolution

• ρ −→/ e−βĤ/Tre−βĤ Unitarity!

• 〈Ĥ〉=const. uniquely determines the equilibrium ensemble.

But: 〈Ĥ2〉, 〈Ĥ3〉, . . . conserved (initial conditions)

• The quantum ensemble cannot converge to equilibrium!

• Still, the quantum average of some selected observables may converge to
the equilibrium value:

〈Φ(x)Φ(y)〉noneq−→ 〈Φ(x)Φ(y)〉thermal, asx0, y0 →∞

Toy model: Chiral quark model, symmetric phase
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Quantum initial value problem

〈TcΦ(y)Φ(x)〉 =?〈
TcΨ̄(y)Ψ(x)

〉
=?

The higher connected n-point functions are dropped

A convenient assumtion:
The density operator at t = 0 is quadratic

• Switching on the interaction at t = 0
• Problems with coupling renormalization:

either the final equilibrium or the initial state is singular

• Considerably simplifies our equations

Task: – Set up explicite equations of motion for the scalar and
fermionic two-point functions
– Solve them numerically in the two-time-variable plane (x0, y0)
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Approximation schemes
Boltzmann equation

1. Small occupation numbers, delute gas
2. On-shell processes only

Classical field theory
1. High occupation numbers (cosmological applications)
2. Nonperturbative dynamics (particle production, domain formation)
3. No quantum effects, failure of the UV description
4. Classical equilibrium 6= quantum equilibrium

Naive strategy for solving the quantum dynamics
1. Equations for the n-point functions built of Heisenberg operators

2a Collisionless approximation:
Connected 4-point functions are neglected → no scattering, no thermalization

2b Inclusion of the 4-point functions, truncation at the 6-point functions:
→ solution blows up

Way out: The truncation of the hierachy should be carried out on the level of the
two-particle irreducible (2PI) effective action. Propagator resummation

→ stable dynamics
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2PI effective action for the fermionic fields
Classical action:

S =

∫
d

4
x

(
ψ̄i(x)[i∂/ −mf ]ψi(x) + V (ψ̄, ψ)

)
Effective action:

Γ[D] = −iTr lnD−1 − iTrD−1
0 D + Γ2[D] + const

iD
−1
0,ij(x, y) = (i∂/ −mf)δ

4
c(x− y)δij

Equation of motion:
δΓ[D]

δDij

(x, y) = 0

Self energy and the propagators (Schwinger–Dyson):

D
−1
ij (x, y) = D0,ij(x, y)

−1 − Σij(x, y;D)

Σij(x, y;D) = −i
δΓ2[D]

δDji(y, x)

EOM for the propagator:

(i∂/x −mf)Dij(x, y)− i

∫
z

Σik(x, z;D)Dkj(z, y) = iδ
4
c(x− y)δij

Σ contains the infinite power series of the propagators → truncation
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Time explicite equations
We consider the real and imaginary part of the propagator:

Dij(x, y) = Fij(x, y)−
i

2
ρij(x, y)sgnc(x

0
, y

0
)

For fermionic fields:

(i∂/ −m− Σ0)F (x, y) =

x0∫
dzΣ

ρ
(x, z)F (z, y)−

y0∫
dzΣ

F
(x, z)ρ(z, y)

(i∂/ −m− Σ0) ρ(x, y) =

x0∫
y0

dzΣ
ρ
(x, z)ρ(z, y)

For scalar fields:(
∂

2
x +m

2
+ Σ0,i(x)

)
Fij(x, y) =

y0∫
dzΣ

F
ik(x, z)ρkj(z, y)−

x0∫
dzΣ

ρ
ik(x, z)Fkj(z, y)

(
∂

2
x +m

2
+ Σ0,i(x)

)
ρij(x, y) =

y0∫
x0

dzΣ
ρ
ik(x, z)ρkj(z, y)

The collision terms appear in the forms of memory kernels.

The equations are time-reversal symmetric (Energy is conserved)
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Lorentz structure
ρ = ρS + iγ5ρP + γµρ

µ
V + γµγ5ρ

µ
A + 1

2σµνρ
µν
T and similarly for F

Symmetry requirements imposed on the initial conditions:

• Space reflection and rotation: → ρ0
A = 0, ρA = 0

• CP symmetry

ρ0
V (x0, y0; p) = ρ0

V (y0, x0; p), ρV (x0, y0; p) = −ρV (y0, x0; p),
F 0
V (x0, y0; p) = −F 0

V (y0, x0; p), FV (x0, y0; p) = FV (y0, x0; p),

→ ρV , FV are real, ρ0
V , F

0
V are imaginary

Discretiation:

• First order space derivative can be transformed out
→ no spatial fermion doubling occurs

• The time-like lattice spacing is much less than the spatial one
→ no time-like doubling either

• The discretized equations for ρV , ρ0
V and F 0

V , FV are reminiscent of the standard
Leap-frog prescription for the canonica co-ordinate and momentum.
→ stable numerics

The formulation of the equations by means of the two-point functions gives a way to avoid the
fermion doubling problem.
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The order of approximation
Self energies form a coupling constant expansion:

Σ
ρ
φ(x

0
, y

0
; ~p) = −8g

2
Nf

∫
d3q

(2π)3
ρ
µ
V (x

0
, y

0
; ~q)FV,µ(x

0
, y

0
; ~p− ~q) ,

Σ
F
φ (x

0
, y

0
; ~p) = −4g

2
Nf

∫
d3q

(2π)3

[
F
µ
V (x

0
, y

0
; ~q)FV,µ(x

0
, y

0
; ~p− ~q)

−
1

4
ρ
µ
V (x

0
, y

0
; ~q) ρV,µ(x

0
, y

0
; ~p− ~q)

]
,

Σ
ρ,µ
V (x

0
, y

0
; ~p) = −g2

Ns

∫
d3q

(2π)3

[
F
µ
V (x

0
, y

0
; ~q) ρφ(x

0
, y

0
; ~p− ~q)

+ρ
µ
V (x

0
, y

0
; ~q)Fφ(x

0
, y

0
; ~p− ~q)

]
,

Σ
F,µ
V (x

0
, y

0
; ~p) = −g2

Ns

∫
d3q

(2π)3

[
F
µ
V (x

0
, y

0
; ~q)Fφ(x

0
, y

0
; ~p− ~q)

−
1

4
ρ
µ
V (x

0
, y

0
; ~q) ρφ(x

0
, y

0
; ~p− ~q)

]
.

Infinite ladder diagrams are summed
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Loss of initial information

• Different initial fermion number distribution

• Equal (conserved) energy density
(uniquely determines the final temperature)

• The equations obey the time-reflection symmetry
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Evolution of the particle distribution

• Particle number distribution from the quasiparticle picture:

FV (t, t
′
; p) =

(
1

2
− n

f
qp(p)

)
cos[p(t− t

′
)];

Fφ(t, t
′
; p)

∣∣
t=t′=now =

1

ε0
(p)

[
n
s
qp(p) +

1

2

]
,

∂t∂t′ Fφ(t, t
′
; p)

∣∣
t=t′=now = ε0(p)

[
n
s
qp(p) +

1

2

]
,
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• The emerging distribution is thermal,
its β parameter defines the quasiparticle temperature
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Final equilibrium
Exact equilibrium relation:

F thermal
S/F (ω, p) =

(
nBE/FD ± 1

2

)
ρthermalS/F (ω, p),

with nBE = 1
eβω−1

and nFD = 1
eβω+1

0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

F
(ω

,p
)/

ρ(
ω

,p
)

vs
.

B
E

 a
nd

 F
D

 s
ta

tis
tic

s

ω [m]

FV(ω,p)/ρV(ω,p)

nFD(ω)

Fφ(ω,p)/ρφ(ω,p)

nBE(ω)

Numerical solution from first principles:
Initially:

FS/F and ρS/F are independent
The dynamics leads to

FS/F ∼ ρS/F
With the measured quotient

n
experiment
S/F ± 1

2
being equal (within error) to

n
experiment
S/F = nBE/FD

1. First numerical evindence for thermalization in 3 + 1 dimensions
2. First observation of the formation of the Fermi-Dirac statistics
3. Estimate for thermalization time (RHIC) τ thermalization . 1fm
4. Fermionic preheating . . .


