The Statistical Properties of Large Scale Structure

Alexander Szalay

Department of Physics and Astronomy
The Johns Hopkins University

Outline

- Lecture 1:
- Basic cosmological background
- Growth of fluctuations
- Parameters and observables
- Lecture 2:
- Statistical concepts and definitions
- Practical approaches
- Statistical estimators
- Lecture 3:
- Applications to the SDSS
- Angular correlations with photometric redshifts
- Real-space power spectrum

Lecture \#2

- Statistical concepts and definitions
- Correlation function
- Power spectrum
- Smoothing kernels
- Window functions
- Statistical estimators

Basic Statistical Tools

- Correlation functions
- N-point and $N^{\text {th }}$-order

$$
\left\langle\rho_{1} \rho_{2}\right\rangle \quad\left\langle\rho_{1} \rho_{2} \rho_{3}\right\rangle \quad\left\langle\rho_{1}^{2} \rho_{2}^{3}\right\rangle
$$

- Defined in real space
- Easy to compute, direct physical meaning
- Easy to generalize to higher order
- Power spectrum
- Fourier space equivalent of correlation functions
- Directly related to linear theory
- Origins in the Big Bang
- Connects the CMB physics to redshift surveys
- Most common are the $2^{\text {nd }}$ order functions:
- Variance $\sigma_{8}{ }^{2}$
- Two-point correlation function $\xi(r)$
- Power spectrum P(k)

The Galaxy Correlation Function

- First measured by Totsuji and Kihara, then Peebles etal
- Mostly angular correlations in the beginning
- Later more and more redshift space
- Power law is a good approximation

$$
\xi(r)=\left(\frac{r}{r_{0}}\right)^{-\gamma}
$$

- Correlation length $\mathrm{r}_{0}=5.4 \mathrm{~h}^{-1} \mathrm{Mpc}$
- Exponent is around $\gamma=1.8$
- Corresponding angular correlations

$$
w(r)=\left(\frac{\theta}{\theta_{0}}\right)^{1-\gamma}
$$

The Overdensity

- We can observe galaxy counts $n(\mathbf{x})$, and compare to the expected counts $\langle n\rangle$
- Overdensity
- Fourier transform
- Inverse

$$
\begin{aligned}
& \delta(\mathbf{x})=\frac{n(\mathbf{x})}{\langle n\rangle}-1 \\
& \delta(\mathbf{x})=\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{k} e^{i \mathbf{k} \mathbf{x}} \delta(\mathbf{k}) \\
& \delta(\mathbf{k})=\int d^{3} \mathbf{x} e^{-i \mathbf{k} \mathbf{x}} \delta(\mathbf{x})
\end{aligned}
$$

$$
k=\frac{2 \pi}{\lambda}
$$

- Wave number

The Power Spectrum

- Consider the ensemble average

$$
\left\langle\delta\left(\mathbf{k}_{1}\right) \delta^{*}\left(\mathbf{k}_{2}\right)\right\rangle
$$

- Change the origin by \boldsymbol{R}

$$
\left\langle\tilde{\boldsymbol{\delta}}\left(\mathbf{k}_{1}\right) \tilde{\boldsymbol{\delta}}^{*}\left(\mathbf{k}_{2}\right)\right\rangle=e^{i\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) \mathbf{R}}\left\langle\boldsymbol{\delta}\left(\mathbf{k}_{1}\right) \boldsymbol{\delta}^{*}\left(\mathbf{k}_{2}\right)\right\rangle
$$

- Translational invariance

$$
\left\langle\delta\left(\mathbf{k}_{1}\right) \delta^{*}\left(\mathbf{k}_{2}\right)\right\rangle=(2 \pi)^{3} \delta^{(3)}\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right)\left|\delta\left(\mathbf{k}_{1}\right)\right|^{2}
$$

- Power spectrum

$$
P(\mathbf{k})=|\delta(\mathbf{k})|^{2}
$$

- Rotational invariance

$$
P(\mathbf{k})=P(k)
$$

Correlation Function

- Defined through the ensemble average

$$
\xi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\delta\left(\mathbf{x}_{1}\right) \delta\left(\mathbf{x}_{2}\right)\right\rangle
$$

- Can be expressed through the Fourier transform

$$
\xi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{(2 \pi)^{6}} \int d^{3} \mathbf{k}_{1} d^{3} \mathbf{k}_{2} e^{i\left(\mathbf{k}_{1} \mathbf{x}_{1}-\mathbf{k}_{2} \mathbf{x}_{2}\right)}\left\langle\delta\left(\mathbf{k}_{1}\right) \delta^{*}\left(\mathbf{k}_{2}\right)\right\rangle
$$

- Using the translational invariance in Fourier space

$$
\xi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{k}_{1} d^{3} \mathbf{k}_{2} e^{i\left(\mathbf{k}_{\mathbf{1}} \mathbf{x}_{1}-\mathbf{k}_{2} x_{2}\right)} \delta^{(3)}\left(\mathbf{k}_{1}-\mathbf{k}_{2}\right) P\left(k_{1}\right)
$$

- The correlation function only depends on the distance

$$
\xi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\int d^{3} \mathbf{k} e^{i k\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)} P(k)=\xi\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

$\mathbf{P}(\mathbf{k})$ vs $\boldsymbol{\xi}(\mathbf{r})$

- The Rayleigh expansion of a plane wave gives

$$
e^{i \mathbf{k r}}=\sum_{l} i^{l}(2 l+1) j_{l}(k r) P_{l}(\hat{\mathbf{k}} \hat{\mathbf{r}})
$$

- Using the rotational invariance of $\mathrm{P}(\mathrm{k})$

$$
\xi\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=\xi(r)=\frac{1}{4 \pi^{2}} \int d k k^{2} j_{0}(k r) P(k)
$$

- The power per logarithmic interval

$$
\xi(r)=\frac{1}{4 \pi^{2}} \int d \ln k j_{0}(k r)\left[k^{3} P(k)\right]
$$

- The power spectrum and correlation function form a Fourier transform pair

Filtering the Density

- Effect of a smoothing kernel $\mathrm{K}(\mathrm{x})$, where $\int d^{3} \mathbf{x} K(\mathbf{x})=1$

$$
\delta_{s}(\mathbf{x})=\delta * K=\int d^{3} \mathbf{x}^{\prime} \delta\left(\mathbf{x}^{\prime}\right) K\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

- Convolution theorem

$$
\delta_{s}(\mathbf{k})=\delta(\mathbf{k}) K(\mathbf{k})
$$

- Filtered power spectrum

$$
P_{s}(\mathbf{k})=|\delta(\mathbf{k})|^{2}|K(\mathbf{k})|^{2}=P(\mathbf{k})|K(\mathbf{k})|^{2}
$$

- Filtered correlation function

$$
\xi_{s}(r)=\frac{1}{4 \pi^{2}} \int d \ln k j_{0}(k r)\left[k^{3} P(k)|K(k)|^{2}\right]
$$

Variance

- At $r=0$ separation we get the variance:

$$
\sigma_{R}{ }^{2}=\frac{1}{4 \pi^{2}} \int d \ln k\left[k^{3} P(k)\left|K_{R}(k)\right|^{2}\right]
$$

- Usual kernel is a 'top-hat' with an $\mathrm{R}=8 \mathrm{~h}^{-1} \mathrm{Mpc}$ radius

$$
K_{R}(r)=\left\{\begin{array}{ll}
1, & \text { if } r<R \\
0, & \text { if } r \geq R
\end{array} \quad K_{R}(k)=\left[\frac{j_{1}(k r)}{k r}\right]\right.
$$

- The usual normalization of the power spectrum is using this window

$$
\sigma_{8}^{2}=\frac{1}{4 \pi^{2}} \int d \ln k\left[k^{3} P(k)\left|K_{8}(k)\right|^{2}\right]
$$

Selection Window

- We always have an anisotropic selection window, both over the sky and along the redshift direction

$$
W(\mathbf{r})=\left\{\begin{array}{l}
>0, \quad \text { if } \text { inside } \\
0, \quad \text { if outside }
\end{array}\right.
$$

- The observed overdensity is

$$
\delta_{w}(\mathbf{x})=\delta(\mathbf{x}) W(\mathbf{x})
$$

- Using the convolution theorem

$$
\delta_{w}(\mathbf{k})=\int d^{3} \mathbf{k}^{\prime} \delta\left(\mathbf{k}^{\prime}\right) W\left(\mathbf{k}-\mathbf{k}^{\prime}\right)
$$

The Effect of Window Shape

- The lines in the spectrum are at least as broad as the window - the PSF of measuring the power spectrum!

$$
\left\langle\delta_{w}(\mathbf{k}) \delta_{w}^{*}\left(\mathbf{k}^{\prime}\right)\right\rangle=\int d^{3} \mathbf{k}^{\prime \prime} d^{3} \mathbf{k}^{\prime \prime \prime}\left\langle\delta_{w}\left(\mathbf{k}^{\prime \prime}\right) \delta_{w}^{*}\left(\mathbf{k}^{\prime \prime \prime}\right)\right\rangle W\left(\mathbf{k}-\mathbf{k}^{\prime \prime}\right) W^{*}\left(\mathbf{k}^{\prime}-\mathbf{k}^{\prime \prime \prime}\right)
$$

$$
\left\langle\delta_{w}(\mathbf{k}) \delta_{w}^{*}\left(\mathbf{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \int d^{3} \mathbf{k}^{\prime \prime} P\left(\mathbf{k}^{\prime \prime}\right) W\left(\mathbf{k}-\mathbf{k}^{\prime \prime}\right) W^{*}\left(\mathbf{k}^{\prime}-\mathbf{k}^{\prime \prime}\right)
$$

- The shape of the window in Fourier space is the conjugate to the shape in real space
- The larger the survey volume, the sharper the k-space window => survey design

1-Point Probability Distribution

- Overdensity is a superposition from Fourier space

$$
\delta(\mathbf{x})=\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{k} e^{i \mathbf{k x}} \delta(\mathbf{k})
$$

- Each δ depends on a large number of modes
- Variance (usually filtered at some scale R)

$$
\left.\sigma^{2}=\left.\langle | \delta\right|^{2}\right\rangle
$$

- Central limit theorem: Gaussian distribution

$$
P(\delta)=\frac{e^{-\frac{\delta^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi \sigma^{2}}}
$$

N -point Probability Distribution

- Many 'soft' pixels, smoothed with a kernel
- Raw dataset \mathbf{x}
- Parameter vector Θ
- Joint probability distribution is a multivariate Gaussian

$$
f(\mathbf{x}, \boldsymbol{\Theta})=(2 \pi)^{-n / 2}|\mathbf{C}|^{-1 / 2} \exp \left(-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{T} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right)
$$

- M is the mean, C is the correlation matrix

$$
\mathbf{m}=\langle\mathbf{x}\rangle \quad C_{i j}=\left\langle x_{i} x_{j}\right\rangle-m_{i} m_{j}
$$

- C depends on the parameters Θ

Fisher Information Matrix

- Measures the sensitivity of the probability distribution to the parameters

$$
\mathbf{F}_{i j}=-\left\langle\frac{\partial^{2} \ln f}{\partial \Theta_{i} \partial \Theta_{j}}\right\rangle
$$

- Kramer-Rao theorem: one cannot measure a parameter more accurately than

$$
\frac{1}{\sqrt{F_{i i}}}
$$

Higher Order Correlations

- One can define higher order correlation functions

$$
\begin{gathered}
\zeta=\left\langle\delta_{1} \delta_{2} \delta_{3}\right\rangle \\
\eta=\left\langle\delta_{1} \delta_{2} \delta_{3} \delta_{4}\right\rangle
\end{gathered}
$$

- Irreducible correlations represented by connected graphs
- For Gaussian fields only 2-point, all other =0
- Peebles conjecture: only tree graphs are present
- Hierarchical expansion

$$
\xi^{N}=Q_{N} \sum \xi_{i j} \xi_{j k} \ldots \xi_{n i}(\mathrm{~N}-1 \text { terms })
$$

- Important on small scales

Correlation Estimators

- Expectation value

$$
\xi\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left\langle\delta\left(\mathbf{x}_{1}\right) \delta\left(\mathbf{x}_{2}\right)\right\rangle
$$

- Rewritten with the density as

$$
\xi_{12}=\frac{\left\langle\left(\rho_{1}-\left\langle\rho_{1}\right\rangle\right)\left(\rho_{2}-\left\langle\rho_{2}\right\rangle\right)\right\rangle}{\left\langle\rho_{1}\right\rangle\left\langle\rho_{2}\right\rangle}
$$

- Often also written as

$$
\xi_{12}=\frac{\left\langle\rho_{1} \rho_{2}\right\rangle}{\left\langle\rho_{1}\right\rangle\left\langle\rho_{2}\right\rangle}-1=\frac{D D}{R R}-1
$$

- Probability of finding objects in excess of random
- The two estimators above are NOT EQUIVALENT

Edge Effects

- The objects close to the edge are different
- The estimator has an excess variance (Ripley)
- If one is using the first estimator, these cancel in first order
(Landy and Szalay 1996)

$$
\begin{gathered}
\xi_{12}=\frac{D D-2 D R+R R}{R R} \\
\xi_{12}=\frac{\left\langle\left(\rho_{1}-\left\langle\rho_{1}\right\rangle\right)\left(\rho_{2}-\left\langle\rho_{2}\right\rangle\right)\right\rangle}{\left\langle\rho_{1}\right\rangle\left\langle\rho_{2}\right\rangle}=\frac{\left\langle\left(D_{1}-R_{1}\right)\left(D_{2}-R_{2}\right)\right\rangle}{R_{1} R_{2}}
\end{gathered}
$$

Discrete Counts

- We can measure discrete galaxy counts

$$
n(\mathbf{r})=\sum_{\alpha} \delta^{D}\left(\mathbf{r}-\mathbf{r}_{\alpha}\right)
$$

- The expected density is a known <n>, fractional
- The overdensity is

$$
\delta(\mathbf{r})=\frac{n-\langle n\rangle}{\langle n\rangle}
$$

- If we define cells with counts N_{i}

$$
\delta_{i}(\mathbf{r})=\frac{N_{i}-\left\langle N_{i}\right\rangle}{\left\langle N_{i}\right\rangle}
$$

Power Spectrum

- Naïve estimator for a discrete density field is

$$
\hat{f}(\mathbf{k})=\frac{1}{N} \sum_{n} e^{i \mathbf{k} r_{n}}
$$

$$
\hat{P}(k)=|\hat{f}(\mathbf{k})|=\frac{1}{N^{2}} \sum_{n, n^{\prime}} e^{i k\left(r_{n}-r_{n}\right)}=\frac{1}{N^{2}} \sum_{n \neq n^{\prime}} e^{i \mathbf{k}\left(r_{n}-r_{n}\right)}+\frac{1}{N}
$$

- FKP (Feldman, Kaiser and Peacock) estimator The Fourier space equivalent to LS

$$
\hat{f}(\mathbf{k})=\sum_{n} \phi\left(\mathbf{r}_{n}\right) e^{i \mathbf{k} r_{n}}-w(\mathbf{k})
$$

$$
\phi(\mathbf{r})=\frac{\bar{n}(r)}{1+\bar{n}(r) P(k)}
$$

Wish List

- Almost lossless for the parameters of interest
- Easy to compute, and test hypotheses (uncorrelated errors)
- Be computationally feasible
- Be able to include systematic effects

The Karhunen-Loeve Transform

- Subdivide survey volume into thousands of cells
- Compute correlation matrix of galaxy counts among cells from fiducial $P(k)+$ noise model
- Diagonalize matrix
- Eigenvalues
- Eigenmodes
- Expand data over KL basis
- Iterate over parameter values:
- Compute new correlation matrix
- Invert, then compute log likelihood

Eigenmodes

Eigenmodes

- Optimal weighting of cells to extract signal represented by the mode
- Eigenvalues measure S / N
- Eigenmodes orthogonal
- In k-space their shape is close to window function
- Orthogonality = repulsion
- Dense packing of k-space => filling a 'Fermi sphere'

Truncated expansion

- Use less than all the modes: truncation

$$
\hat{f}=\sum_{i=1}^{M} b_{i} \Psi_{i}, \quad M<N
$$

- Best representation in the rms sense

$$
(f-\hat{f})^{2}=\sum_{i=M+1}^{N} \lambda_{i}
$$

- Optimal subspace filtering, throw away modes which contain only noise

Correlation Matrix

- The mean correlation between cells

$$
\xi_{i j}=\iint d^{3} r_{1} d^{3} r_{2} \xi^{(s)}\left(r_{1}, r_{2}\right) W_{i}\left(r_{1}\right) W_{j}\left(r_{2}\right)
$$

- Uses a fiducial power spectrum
- Iterate during the analysis

Whitening Transform

- Remove expected count n_{i}
- 'Whitened' counts

$$
d_{i}=\left(\frac{g_{i}-n_{i}}{n_{i}}\right) \quad R_{i j}=\xi_{i j}+\frac{\delta_{i j}}{n_{i}}+\frac{\varepsilon_{i j}}{n_{i} n_{j}}
$$

- Can be extended to other types of noise => systematic effects
- Diagonalization: overdensity eigenmodes
- Truncation optimizes the overdensity

Truncation

- Truncate at $30 \mathrm{Mpc} / \mathrm{h}$
- avoid most non-linear effects
- keep decent number of modes

