

Virgo Data Analysis

Andrea Viceré Università di Urbino and INFN Firenze e-mail: vicere@fis.uniurb.it

FRANCE - CNRS

- ESPCI Paris
- IPN Lyon
- LAL Orsay
- LAPP Annecy
 - OCA Nice

- ITALY INFN
- Firenze-Urbino
- Frascati
- Napoli
- Perugia
- Pisa
- Roma

HTASC 2003, Pisa June 13th

A.Viceré, Università di Urbino

What is VIRGO in one slide

- Michelson Interferometer
- Fabry-Perot cavities in the arms, to extend the optical length
- Translates the metric distortion *h* into modulations of the signal at the dark port
 - Bandwidth: from 4Hz up to 10 kHz.
- Audio signals!

Virgo Design sensitivity

A.Viceré, Università di Urbino

VIRGO Physics

- Two kind of sources
 - Impulsive, of various duration, emitted by coalescences of binary stars, or supernova explosions
 - Continuous, emitted by distorted rotating neutron stars, or as a background of cosmological origin.

Data Acquisition

- Time series, not events.
- Multiple sources
 - ♦ Locking signals
 - Environmental monitors
 - Triggering data
 - ♦ Data quality parameters
- Slow (few Hz) and fast (20 kHz) stations
- Large data flow: range 1-5 Mbyte/sec, that is 30-150 Tbyte.year

- *Real Time* [Cascina]
 - ♦ Interferometer control and monitoring
 - ◆ Data acquisition and archiving (on buffering disks)
- In Time [Cascina]
 - Data conditioning: calibration, re-sampling, subtraction of the instrumental artefacts (the so called *h* reconstruction)
 - First stage of the search for impulsive signals (resulting from coalescing binaries or supernova events)
 - ♦ Data migration, from the disk buffer to a tape storage system
- *Off-line* [Cascina, Laboratories, Computing centers]
 - Search for periodic signals from rotating neutron stars
 - ♦ Second stage of the impulsive signal search
 - ♦ In-depth study of the instrumental noise
 - ◆ Re-processing (if needed), simulation and Monte Carlo studies

Data flow on the Cascina site

- Interferometer control and data acquisition isolated by disk buffers.
- No interference on the DAQ due to the DA algorithms, which get inputs from different server processes.
 HTASC 2003, Pisa June 13th
 9/20
 A.Viceré, Università di Urbino

Real time analysis section

- The real time processes collect digital signals from the different sensors and organize them in *frames*, each containing 1 seconds worth of instrumental output
- Statistics useful to monitor the trends are continuously computed and saved, duplicated in separated files for easy of access
- Also the control signals are saved in the frames, to make it possible reproducing off-line the calibration procedure

Data Format

• LIGO/VIRGO standard

h Reconstruction concept

- To unfold the signal transfer function
 - At low frequencies, recover h from control signals
 - Diode read-out sensitive to offsets from working point
 - Requires off and/or on line calibration
 - Requires in time operation

Coalescing binaries search strategy

- Events: "chirps"
 - Locally sinusoidal signal, with increasing frequency
 - ◆ Details depend on physical parameters
 - Residence in the detection band: from a few seconds up to a few minutes.

- Basic method: matched filtering
 - **Computing requirements: O(300 Gflop/s) sustained**
 - ◆ Parallelism: on the filters for different parameters
 - Hardware architecture: PC farm in master-slave configuration, equipped with an MPI infrastructure
 - Software components: waveform generation, parameter space tiling, filtering of the data on the parallel computing system, event reconstruction

Bursts analysis strategy

- Events: "glitches"
 - Short duration: few tens of msec, O(10³) samples
 - Minimal knowledge of the waveforms

- Unknown waveforms \rightarrow "blind" search methods
 - ◆ Matched filters for damped sinusoids
 - "Excess noise" detectors (in various forms)
 - ◆ Computing requirements: relatively modest O(1-10 Gflop/s)

•

- ◆ Parallelism: embarassing, on the search methods
- Hardware architecture: master/slave, with different search methods running on different computing units (or partitions of the same hardware)

In-time analysis section

- Raw Data Files are read by a server process, which hands them to the pipeline of the data conditioning and data quality processes
- Conditioned data distributed by a "Star Node" to specialized computer systems.
- Results sent back to the Star Node and saved in the "Processed Data", including a "Network Data" stream, to be sent to other collaborations for coincidence analysis

Periodic signals search strategy

- ► Essentially a periodic signal
 → FFT methods
 - ♦ But, Earth motion introduces a huge Doppler effect, depending on the source position → large number of parameters in the search
- Low SNR → long integration time
- Too many parameters \rightarrow hierarchical, sub-optimal search
 - Partially incoherent analysis based on short FFTs and the Hough transform,
 - supplemented by a coherent follow-up of the best candidates
- Hardware
 - ♦ A definite parallel architecture still to be finalized, based on PC clusters (for their cost effectiveness) and on a master slave architecture (for its simplicity)

HTASC 2003, Pisa June 13th

A.Viceré, Università di Urbino

Data and computing resource access

A centralized file catalogue (the "BookKeeping Data Base") will receive data requests and address the users to the most accessible data repository

- Cascina
 - Data production and in-time analysis
 - ♦ Primary archive role
- Bologna e Lyon
 - Secondary archives
 - Computing centres
 - ◆ Primary data distributors for the Labs

Laboratories

- R&D on methods and software
- ♦ Offline analysis
- Data distribution
 - Based on the GRID toolkit and on data transfer tools (BBFTP, RSYNC)
- Computing resources sharing
 - ♦ In Italy, GRID is proposed

Software architecture and environments

- *Real time*
 - Most of the data acquisition and control software is written in Object Oriented C or in C++
 - The inter-process communication is handled by a library developed inside Virgo (the Cm library)
- *In-time and off-line*
 - ♦ All the libraries share an OO architecture: while no strict rule has been enforced, the tendency is to adopt the C language for basic libraries (frame handling, vector elaboration, signal analysis) and C++ for high level libraries
 - ◆ Several programming/analysis environment are being experimented
 - An environment based on ROOT (VEGA).
 - A collection of MatLab extensions (SNAG).
 - A scripting environment, based on Tcl/Tk (Dante).
 - The inter-process communication software chosen for the coalescing binaries farm is MPI

• The Virgo collaboration plans to have its first science run in 2004

• The sensitivity will be initially inferior to the design one, but the collaboration will perform a full analysis of the data produced

- To be ready for the analysis of real data, the collaboration is performing Mock Data Challenges, progressively testing more and more elements of the analysis chain
 - ♦ A Monte Carlo is available to produce noise data in Frame format, and to inject physical events.