Event Generators in LHCb

(with contributions from N. Brook and O. Schneider)

- Introduction
 - LHCb
 - Event generation framework
- Use of PYTHIA
 - Minimum bias
 - B-events
- HERWIG
- EvtGen
- Summary

LHCb Experiment

Precision Measurements of CP violation in the B Meson System

 measure CKM angles from the CP asymmetries in the final states of B-meson decays

- large sample of events with Bd and Bs Mesons
- most of the b hadrons are produced at small polar angles
- possible to exploit b-hadrons correlation (both of them go either forward or both backward)
- LHCb: Single Forward Arm
 Spectrometer with Open Geometry

MC application – old way

- Fortran simulation application
- primary generator Pythia 6.205
- decay package QQ 9.02
 - called from within Geant3 (Fortran) event loop, to generate particular decay channels
 - a large number of existing "decay files" prepared (by LHCb)

MC application – new way

- underlying OO software framework (Gaudi) used by all LHCb event processing software
- all generators "wrapped" into C++ code to make them "callable and controllable" from within Gaudi framework
- primary generator Pythia 6.205 (the same as before)
 - interfaced to HepMC
- decay package EvtGen
 - interfaced to HepMC
 - using "forced decay" mechanism from Geant4 to generate particular channels
 - "decay files" need to be rewritten (translated from QQ)

Overall framework

sequence Generation Sequence generated events saved in HepMC format in ROOT file HepMC::GenEvents simulation sequence can be (GenVertices, "fed" with HepMC events GenParticles) from a ROOT file (coming from a repository) **OOGen** Simulation Sequence OOSim ROOT **MCParticles MCVertices** Digitization **MCHits**

possibility of running each

stage separately or in

Overall framework

- persistency provided by the expt (& LCG) framework (Gaudi, SEAL+POOL in the future)
- particle data provided by the framework (Gaudi ParticleDataSvc)
 - would like to interface it to "standard"HepPDT
 - service that should be provided by the future generic simulation framework?

Event generation sequence

Event generation sequence

- spillover handled at the digitization stage (several events combined with the time coordinate appropriately shifted)
 - should be done at generator level? (probably not)
- machine background added at the digitization level

Current configuration

- currently LHCb use PYTHIA 6.205
 - tuned to UA5 data using a multiple (parton-parton) interaction model
 - use CTEQ4L (with appropriate Pt cut-off)
 - all events generated with msel=2
- b events are selected from min. bias events
- EvtGen used for decays (BaBar, Belle, CDF & D0)
 - replacing QQ v 9.02

Minimum Bias in PYTHIA

- Multiple interactions
 - needed to describe UA5 and CDF multiplicities.
 - Shape best described by varying impact parameter model with a single Gaussian matter distribution (LHCb99-028)
- pQCD cross-section divergent for small P_t
 - Regularise with running P_t cut-off (hep-ph/0001032)
- Energy dependence of P_t cut-off tuned for each PDF
 - Compare for predictions with PYTHIA 6.205
 - Using CTEQ4 L

Pythia - LHCb tuning

- Use non-single-diffractive data (UA5 and CDF)
- Values that minimise the difference from measured central dN/dη used to fit function,

$$P_{T\min} = P_{T\min}^{LHC} \left(\frac{\sqrt{s}}{14TeV} \right)^{\varepsilon}$$

$$P_{T \min}^{LHC} = 3.47 \pm 0.17$$
 GeV/c $\epsilon = 0.174 \pm 0.010$

CDF tuning - uses double Gaussian for description of data (PYTHIA MI model 4)

PYTHIA Event Multiplicity at LHCb

Average charged multiplicity	Minimum bias
CDF tuning at 14 TeV	16.53 ± 0.02
LHCb tuning, default p _T ^{min}	21.33 ± 0.02
LHCb tuning, 3σ low p _T ^{min}	25.46 ± 0.03

Min bias event shapes

No large differences in P_T distributions

Min bias events at LHCb

Changing PDFs
(CTEQ4L &
CTEQ5L)- again
essentially
identical for min
bias events (for
same tuning)

B⁰ events at LHCb

- ·b events are selected from min. bias events
 - is there a better way?
 - what is the most realistic way of generating bb events?
 - important to better understand relative fraction of different bb production mechanisms (gluon fusion, etc)

Forced Fragmentation:

LHCb modified PYTHIA routine that selects the parton and hadron flavours in fragmentation (PYKFDI)

- Handles the fragmentation of b-quarks forcing the "transition" into any pre-selected hadrons
- Pre-selected B hadron always generated from string (i.e. no production from other B resonances)
- B kinematics been checked for Λ_b , B_c , B_s , B^+ and B_d

B^o events at LHCb

Forced Fragmentation of B⁰

 η and p_T distributions between forced and "natural" fragmentation are compatible

B⁰ events at LHCb

Average charged multiplicity	bb
CDF tuning at 14 TeV	27.12 ± 0.03
LHCb tuning, default p _T min	33.91 ± 0.03
LHCb tuning, 3σ low p _T min	42.86 ± 0.03

B⁰ events at LHCb

Differences in $\langle n_{ch} \rangle$ ~same % change for b-events More noticeble difference in P_T dist^{bns}

Herwig

- seems interesting as an alternative to Pythia:
 - Different hadronisation mechanism clusters as opposed to strings
 - •Different implementation of parton showers p_T ordering compared to angular ordering
 - •HERWIG known from e⁺e⁻ to give larger contribution of gluon splitting to heavy quarks $g\rightarrow bb$
- but:
 - no multiple interactions

Multiple Interactions in HERWIG

- In principle MI not available within HERWIG
- In practice, interface program (JIMMY Butterworth, Forshaw
 & Walker) allows MI
- Also available, ad-hoc modelling of the "soft underlying" event (SUE - based on UA5 model)
- Parameter available for tuning in both JIMMY and SUE options.

Comparison of JIMMY and UA5 Data

- essentially one "free" parameter which is the p_T^{min} of the hard scatt.

As $p_T^{min} \uparrow$ the # of scatters decrease & predictions approach UA5 data.

Failed to find a setting that could describe the data. No further study presented here.

EvtGen

- we are (and will be) using it but are concerned with lack of "official" support, release policy, etc
- couldn't EvtGen work directly with HepMC?
- common decay files (maintained by LCG)?

EvtGen vs QQ validation

- B0-> J/psi(mu mu) K0S(pi pi)
 - Muon and Pion pT distribution

No. = 14232 14904

Mean = 1.968 1.932

RMS = 1.247 1.309

QQ EvtGen

No. = 14232 14904

Mean = 0.9362 0.949

RMS = 0.8014 0.8135

What we would like to have...

- tools for testing/comparing/tuning MC generators
 - Generic tools not used in LHCb so far
 - Welcome development of common project a la HZTOOL/JetWeb
 - Need to include hadronic data
 - UA5
 - FNAL corrected data !!!!!!!!!!
- HERWIG
 - not yet used in LHCb
 - keen on seeing development in Herwig++

Summary

- "unhealthy" in hadron collider environment to rely on a single generator – but work still needed on HERWIG
- keen to see development of generic tools for use with generators
- exchange of knowledge on use of EvtGen in hadronic environment & e+e-
- better understand contribution from different bb production mechanisms
- keen to see 'official' support for EvtGen, HepMC and HepPDT(?)
- hope for w/s to develop cross collaboration (accelerator lab) programme of work