MadGraph + MadEvent

MadGraph/MadEvent Can Automatically Calculate 1-Loop Cross Sections ?

Not Yet!

Tim Stelzer Fabio Maltoni

Outline

• Why am I here?

- MadGraph
 - -Topology Generation
 - Diagram/Amplitude Generation
- MadEvent

-Single Diagram Enhanced MC

Why Am I Here?

- Currently MadGraph/MadEvent
 - Generates Born Level σ
 - Uses Helicity Amplitudes
 - Generates Color-Connected Amps
 - Efficient Single-Diagram Integration
- Soon it could
 - Subtraction of Reals
 - 1-loop diagrams
 - 1-loop helicity amplitudes??

Matrix Element / Feynman Diagrams

- Inspired by FeynArts.
- Fortran computer program that:
 - Generates fortran helicity code (HELAS) to calculate tree level matrix elements
 - Includes color/symmetry factors
 - Creates postscript file of Feynman diagrams.

MadGraph Example pp -> W⁺ + 3 jets

- Enter Process: pp > e+ ve jjj
- Enter QCD Order: 3
- Enter QED Order: 2 (..... wait 2 minutes)
- Generated 53 sub processes

Start with 3 external line topology
 Add external line to 1

 Start with 3 external line topology – Add external line to 1

Topologies

Start with 3 external line topology _____
 Add external line to 1

- Add external line to 2

Start with 3 external line topology
 Add external line to 1

- Add external line to 2
- Add external line to 3

Diagram/Amplitudes

uu~ > uu~

2

- For each topology
 - Write all external wave functions

call ixxxxx(p1,W1) call oxxxxx(p2,.....W2) call ixxxxx(p3,.....W3) call oxxxxx(p4,...W4)

- Choose vertex w/ only 1 unknown line
- Determine allowed interactions and write wavefunction.

call jioxxx(W1,W2,W5)

- Continue until all lines known, write amp. call iovxxx(W3,W4,W5, ...AMP(1))

Other Elements

- Optimization
- Color factors
- Summing over partons
- Loops?

MADEVENT!

Monte Carlo Integration $\int f(\mathbf{x}) \, d\mathbf{x} \approx \sum_{i=1,N} f(x_i) \frac{V}{N}$

- Advantages
 - Large numbers of dimensions
 - Complicated cuts
 - ONLY OPTION
 - Event generation
- Limitations

– Only works for function $f(x) \approx 1$

Adaptive M.C. (VEGAS)

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{g_i} \frac{V}{N}$$

- Advantages $\int \frac{1}{(x^2+a)} \frac{1}{(y^2+b)} dxdy$ Grid adjusts to numerically flatten peaks

 - Flexible
- Limitations $\int \frac{1}{((x-y)^2+a)} dxdy$
 - Adjusting grid takes time
 - Peaks must lie on integration variable

$$\sigma = \int |a_1 + a_2|^2 d(PS) = \sum_{i=1,N} \frac{|a_1(p_i) + a_2(p_i)|^2}{\alpha_1 g_{1i} + \alpha_2 g_{2i}} \frac{V}{N}$$

- Advantages
 - Allows for more complicated peaks
- Limitations
 - Need to calculate all g_i values for each point. (slow)
 - Each phase space channel must be invertible
 - N coupled equations for α_i so only works for small number of channels.

Single Diagram Enhanced MadEvent

 $\sigma = \int |a_1 + a_2|^2 d(PS) = \int \frac{|a_1 + a_2|^2}{|a_1|^2 + |a_2|^2} |a_1|^2 d(PS) + \int \frac{|a_1 + a_2|^2}{|a_1|^2 + |a_2|^2} |a_2|^2 d(PS)$

- Key Idea
 - Any single diagram is "easy" to integrate
 - Divide integration into pieces, based on diagrams
- Get N independent integrals
 - Errors add in quadrature so no extra cost
 - No need to calculate "weight" function from other channels.
 - Can optimize # of points for each one independently
 - Parallel in nature
- What about interference?
 - Never creates "new" peaks, so we're OK

MadEvent Example Vector Bosons

	+n jets	order		unit	T	1.1/2
process		qcd	qed	unit	Tevatron	LHC
e+ ve (e- ve~)	0 1 2 3 4	n	2	pb	$ \frac{758}{182} \\ \frac{46.6}{12.0} \\ \frac{3.2}{3.2} $	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
e+ e-	0 1 2 3 4	n	2	pb	$ \frac{210}{46.2} \\ \frac{12.6}{3.30} \\ 0.871 $	$ \frac{1000}{398} \\ \frac{179}{79.0} \\ \frac{35.1}{35.1} $
e+ ve (e- ve~) b b~	0 1 2	n+2	2	fb	$\frac{\frac{427}{195}}{\frac{73.1}{2}}$	$\begin{array}{c} \underline{2330} \\ \underline{2950} \\ \underline{2600} \\ \hline (1980) \end{array}$
e+e-bb~	0 1 2	n+2	2	fb	$\frac{165}{79.3}$ 28.0	3880 3080 1770
W+W-	0 1 2	n	2	pb	9.28 3.84 1.23	$ \frac{46.3}{37.0} 25.3 $
W+ Z (W- Z)	0 1 2	n	2	pb	$\frac{1.49}{0.633}$ 0.209	$\frac{\frac{10.0}{10.7} \frac{(7.25)}{(7.31)}}{\frac{9.15}{(6.40)}}$
Z Z	0 1 2	n	2	pb	$\frac{1.04}{0.440}$ 0.133	<u>6.70</u> <u>4.95</u> <u>2.97</u>

18

MadEvent Example Heavy Quarks and Higgs

process	+n jets	order		unit	Towatwop	1.110
		qcd	qed	unit	revacion	LILL
t t~	0 1 2 3	n+2	o	pb	$ \frac{7.67}{3.53} \\ 1.24 \\ 0.385 $	579 762 660 460
b b~	0 1 2 3	n+2	o	nb	$ \frac{\frac{832}{113}}{\frac{29.0}{6.35}} $	<u>15000</u> <u>3040</u> <u>1110</u> <u>356</u>
	<u>0</u> <u>1</u>	n+4	o	fb	$\frac{14.5}{8.21}$	<u>3890</u> <u>6440</u>
~4 4 ~1 1	0 <u>1</u>	n+2	2	fb	$\frac{1.14}{0.747}$	336 380
b b~ b b~	0 <u>1</u>	n+4	0	pb	$\frac{86.1}{41.0}$	4050 546
	0 <u>1</u>	n+2	2	fb	676 428	<u>16100</u> <u>4090</u>
			1			

process	+n jets	order		unit	Towatyon	1.40
		qcd	qed	uiit	Tevacron	LIC
h	2 3	n-2	3	fb	<u>157</u> <u>89.3</u>	<u>1550</u> <u>1000</u>
t t~ h	0 1 2	n+2	1	fb	$\frac{7.30}{3.14}$ 1.00	545 830 852
W+h (W-h)	0 1 2 3	n	2	fb	$ \frac{67.9}{29.3} \\ \frac{9.11}{2.34} $	$ \begin{array}{r} 563 \\ 425 \\ 250 \\ 137 \\ (89) \\ \end{array} $

It Works!!!

- Integrates cross section and generates unweighted events for "any" tree-level processes.
- Advantages
 - Can handle "general" problem
 - Parallel in nature
 - Sub channel numbers help with cuts
- Limitations
 - Still need to adjust grid in some channels.
 - W+5 jets (7,000 diagrams w/ hundreds sub processes)

Conclusions

- MadGraph Could Be Helpful for Automating NLO
- Born cross section
- Real Subtraction
- Automated Integration and Phase Space

• Loop Diagrams